
ICHOLSON STEAM TRAPS & SPECIALTIES DESIGNER'S GUIDE

- Mechanical Steam Traps
- Thermostatic Steam Traps
- Thermodynamic Steam Traps
- Condensate Pumps
- Compressed Air Products
- Gasketed Unions
- Sanitary Steam Products
- Drain Orifice Steam Traps



19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

Nicholson steam traps are manufactured by Circor Energy

ISO 9001 Certificate Number: 33694

NICHOLSON STEAM TRAP is a member of the Fluid Controls Institute.

NICHOLSON STEAM TRAP has a policy of continuous product research and improvement and reserves the right to change design and specifications without notice. Responsibility for typographical errors is specifically disclaimed.

NICHOLSON STEAM TRAP

Nicholson Steam Trap was founded in 1883 by W. H. Nicholson, Sr. He, along with his sons William, George and Samuel produced a variety of steam specialty products at their facility in Wilkes-Barre, Pennsylvania. Trap manufacturing was begun early in the twentieth century with the precursor to our current weight operated series traps. In the 1930's, a wide range of bellows-activated thermostatic traps were developed, the descendants of which are still built today in a modern facility at Walden, New York which manufactures a wide range of products from safety valves to control valves and, of course, steam traps.

The Nicholson Steam Trap product line is focused on the industrial marketplace and features traps ranging from highly polished stainless steel sanitary traps to innovative free float F&T traps. Nicholson thermostatic traps are known throughout the industry for their value and durability. Equally respected in naval yards are Nicholson orifice traps, offering long life and easy maintenance. A recent product introduction is the Condensate Commander Pump; a steam powered pump available in several sizes including prefabricated skid mounted systems. These continue the Nicholson tradition of providing high performance, value-oriented products to the industrial marketplace.

Nicholson Steam Trap, located in Walden, New York, has been producing a full line of steam specialties including steam traps, condensate pumps, sanitary steam traps, air traps and drain orifice unions since 1883. Nicholson Steam Trap is a Division of Spence Engineering Company, Inc.

For more information on Nicholson Steam Trap, visit our website at <u>www.nicholsonsteamtrap.com</u> or reach us via e-mail at<u>sales@nicholsonsteamtrap.com</u>

TABLE OF CONTENTS

The Nicholson Advantage is Service4
How to Use this Handbook5
Steam Trap Selection6
Types of Steam Traps6
Selecting a Steam Trap6
Checklist for Confirming Operating Conditions7
Steam Trap Application Guide8
Steam Trap Selection Criteria Matrix9
Nicholson Steam Trap Options9

THERMOSTATIC STEAM TRAPS

Liquidator 450 Series Thermostatic Steam Trap Features 10
N125 Series Thermostatic Steam Traps12
N450 Series Thermostatic Steam Traps14
Liquidator 450 Series Universal Mount
Thermostatic Steam Traps16
TA Series Thermostatic Steam Traps
N650 SeriesThermostatic Steam Traps20
Achiever "A" Series Thermostatic Steam Traps22
Believer "B" Series Thermostatic Steam Traps24
Conqueror "C" Series Thermostatic Steam Traps26

MECHANICAL STEAM TRAPS

Nova NFT250 Series Variable Orifice Steam Traps Features 30
Dura-Flo Inverted Bucket Steam Trap Features
Nova NFT250 Series Variable Orifice Steam Traps32
Nova NFT650 Series Variable Orifice Steam Traps
FTN Series Float & Thermostatic Steam Traps
Max-Flo Super High Capacity Float & Thermostatic Steam Traps
FTE Series Float & Thermostatic Steam Traps40
Dura-Flo Inverted Bucket Steam Traps44
Dura-Flo Inverted Bucket Steam Traps PCA Repair Kits47
FTN Series Float & Thermostatic Steam Traps Repair Kits 47
Sealed SS Dura-Flo Inverted Bucket Steam Traps48
Repairable SS Dura-Flo Inverted Bucket Steam Traps50

THERMODYNAMIC STEAM TRAPS

Liquidator UMT-TD Series Thermodynamic Steam Trap
Features52
NTD600 Series Thermodynamic Steam Traps54
S610 Series Thermodynamic Steam Trap56
S650 Series Thermo-active Steam Trap58
Liquidator UMT-TD Universal Mount
Thermodynamic Steam Traps60

ORIFICE STEAM TRAPS

Type DFA Drain Orifice Steam Trap	64
Type DUA Orifice Union Assembly	

CLEAN STEAM PRODUCTS

CONDENSATE RECOVERY

Condensate Commander Pump Features
Condensate Commander Pump86
Condensate Commander Classic Pump87
Condensate Commander Big Boy Pump88
Condensate Commander Horizontal Pump
Condensate Commander Little Boy Pump90
Condensate Commander Pump Capacity Table
Condensate Commander Pump Skid Mounted System92
Condensate Commander Pump Primer94
Condensate Commander Pump Checklist95
Condensate Commander Pump Selection Guidelines96
Condensate Commander Pump Installations97

UNIFLEX COUPLINGS AND GENERAL USE VALVES

Uniflex Carbon/Stainless Steel Pipe Couplings Features	100
Uniflex Carbon/Stainless Pipe Couplings	.102
Type D Pressure Reducing Valve	.104

AIR TRAPS/LIQUID DRAINERS

Drain-Air & Mini-Drains1	80
TAV Series Thermostatic Air Vent1	10
Eliminator Series Steam Separator	12

PIPING SPECIALTIES

Big Block UMT Valve Station Features	114
Big Block Universal Mount Trap Valve Station	116
STV Series Combination Trap Test &	
Blocking Steam Valve	118
SS600 Series Noise Diffuser	120
Pneumatic Mufflers	122

STEAM TRAPPING PRIMER

Thermostatic Steam Traps127
Mechanical Steam Traps127
Thermodynamic Steam Traps129
Orifice Steam Traps129
Sizing Steam Traps130
Sizing Condensate Return Lines136
Steam Tracing Design Guidelines137
Clean Steam Design Guidelines138
Piping & Trapping Design Guidelines138
Sizing Eliminator Steam Separators139

TABLE OF CONTENTS

TECHNICAL REFERENCE

Steam Tables	142
Pressure to Vacuum	144
Properties of Water	144
Condensation Warm-up Loads	145
Condensation Loads	145
Conversion Tables	146
Pipe Data Tables	147

APPLICATION DRAWINGS

Oven Heating Coils152
Drip Leg/End of Main Leg153
Shell & Tube Heat Exchanger154
Vessel with Steam Coil Outlet at Top155
Unit Heater156
Flat Work Ironer157
Steam Press158
Jacketed Pressure Vessel159
Pressure Vessel with Dimple Jacket160
Flash Tank with Condensate Booster Pump161
Multi-coil Air Handler162
High Pressure Air Coil163
Dry Can/Calender Roll164
Jacketed Kettle165
Tilting Jacketed Kettle166
Domestic Hot Water167
Glossary of Terms

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

THE NICHOLSON ADVANTAGE IS SERVICE

LOCAL TECHNICAL SUPPORT

Nicholson Steam Trap has a network of technically trained Representatives around the world. These Representatives can direct you to local inventory of our products for fast, fast service. They can also help you in the selection and sizing of Steam Traps, Air Traps, Condensate Pumps and other Steam Specialties.

TECHNICAL TRAINING

We offer a regular schedule of workshops covering various technical issues in our state of the art Valve Technology Training Center. We can also schedule customized training sessions to suit your particular needs.

ENGINEERING SEMINARS. These seminars provide the engineer with the skills of steam trap selection and sizing.

DISTRIBUTOR SEMINARS. This seminar will provide you with all the information you need to serve your customers.

MAINTENANCE SEMINARS. Maintenance personnel will receive hands-on training in selection, installation, operation, maintenance and troubleshooting.

NICHOLSON GUARANTEE

Nicholson Steam Trap warrants that the products we manufacture will be free from any defects in material or workmanship for a period of one year (or longer, when specified in product literature) from receipt by purchaser.

INTERNATIONAL SALES

Nicholson is well equipped to provide product to our customers around the world. We regularly ship our products to all parts of the world. Our experienced international sales group can meet the transport and documentation requirements of our international customers with ease. Our network of International Technical Sales Representatives will also be able to provide you with product from local inventory.

CANADIAN SALES

Nicholson maintains a technical sales representative network throughout the Canadian provinces. Nicholson products are registered with Canadian federal and provincial authorities. Canadian Registration Numbers are available. Please consult factory for a particular product CRN.

How to Use this Handbook

If you already know the product that you want information on, find the product page in the Table of Contents. Detailed product information on materials, ratings, dimensions, weights and applications are found in the Products Sections. General application and design information is in the Primer Section.

If you are not sure of what you need, collect all the following information. You will need it to select the right product for your needs.

Service (i.e.: Steam, Compressed Air, Water, etc.)

Inlet Pressure

Flow Rate (or Capacities)

Outlet or Condensate Return Pressure

Application (i.e.: Condensate Removal, Pump, Pipe Couplings, etc.)

Application data is listed on all Product Pages. If you identify the nature of the installation, it will assist you selecting the proper equipment.

WHAT KIND OF TRAP IS NEEDED?

Bucket? F&T? Disc? Steam Pump? First the objective must be defined - then a trap must be chosen. If pumping is required then a condensate commander must be selected. Once the requirements for condensate removal have been defined, the primer section may be consulted to best match product characteristics to the application at hand. Following the primer section the trap selection guide should help refine the search. For those who possess a basic understanding of traps and the Nicholson product line, starting with the trap selection guide may be appropriate.

Once the application parameters have been defined (e.g. condensate removal from a 70 psi steam system, drip leg application, continuous duty, 180 lb/hr condensate flow) and a design of trap decided upon (e.g. thermostatic, carbon or stainless steel construction, 200 psi minimum operating pressure, integral strainer) the product section should be consulted to determine the range of traps available. Often several traps may meet the need. General preferences such as repairable design versus sealed, maintenance free designs, size and piping configuration, and cost are a few considerations that will help select a specific type trap.

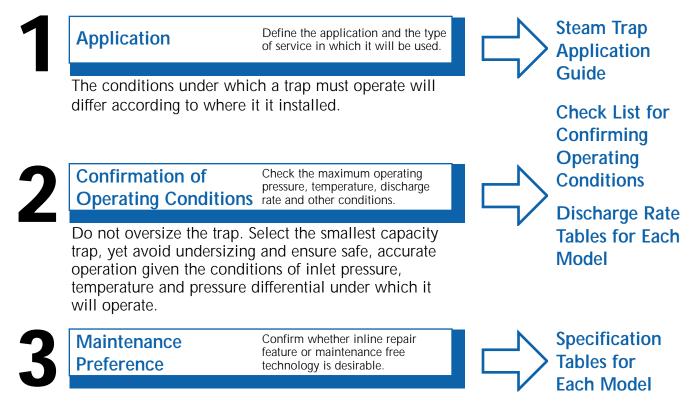
ECONOMICAL, LONG LIFE, OR BEST SUITED FOR THE APPLICATION

Unfortunately, the best trap for an application may not necessarily be the least expensive or have the longest life span. Typically, other considerations such as ease of maintenance, initial cost, piping considerations, etc. may influence trap selection. The product section will list all pertinent specifications including overall length and features that may influence trap selection.

How to FIND NICHOLSON TRAPS

Nicholson Steam Traps are manufactured and stored in Walden, New York, a village located in the lower Hudson Valley about 60 miles north of New York City. Nicholson goes to market through Manufacturers' Representatives and Stocking distributors across the country. To find the nearest stocking location, contact the Nicholson factory at 845-778-5566 or visit our web site at www.nicholsonsteamtrap.com.

STEAM TRAP SELECTION


Types of Steam Traps

	Thermostatic		Mechanical	Thermoo	Orifice		
Туре	Bellows Bimetal		F & T	Bucket	Disc	Orifice	
Condensate Discharge	Intermittent	Intermittent	Continuous	Intermittent	Intermittent	Continuous	

- The optimum application of a trap is dependent upon the characteristics of the process and equipment with which it is used and its pattern of condensate discharge.
- The discharge capacity of a trap is determined by the pressure differential (trap inlet pressure minus outlet pressure) and the size of the orifice. Thermodynamic and Thermostatic traps (radiator and temperature modulating) have a fixed orifice size.
- Mechanical traps differ from the other types in that their orifice (discharge opening) must be selected to accommodate the maximum operating differential pressure.
- **Caution** Failure to select the proper orifice may result in insufficient discharge capacity, waterlogging or locking of the trap.

Selecting a Steam Trap

It is important to select a product with the optimum capacity from the many types which are available. Use the following procedure to make sure the correct product is selected.

CHECK LIST FOR CONFIRMING OPERATING CONDITIONS

(A) Confirmation of Conditions		
1. What is the application?		
2. Which trap is appropriate for the application? ^{*1}		
3. What is the trap inlet pressure? ^{*2}		psig
4. What is the outlet pressure? ^{*2}		psig
5. What is the condensate load?		lb/Hr
(B) Selection		
1. The required discharge capacity of the trap is times *3 the	e amount of cond	densate generated.
2. Inlet pressure – Outlet pressure = Pressure differential.		
 Select a trap with a maximum operating pressure equal to or slightly above the inlet pressure to the trap. 		
4. Select a discharge rate for the		
pressure differential from the discharge capacity chart.		
Ŭ . Ŭ	♦ differential	Required discharge capacity
	psig	Ib/Hr
5. The trap with the smallest discharge capacity greater than the	at required is the	optimum trap
 6. Connection size 		
7. Connection Type		in
Screwed Flanged (flange standard	_) 🗖 So	cketweld
*1. See tables for selection of a steam trap by application.		
*2. If unknown, is condensate recovered?	Yes No(ba	ack pressure = 0 psig)
If condensate is recovered How many foot doos the trap outlet rise?		psig
	x 0.5 =	psig
recovery tank?	x 0.01 =	
③ What is the pressure of the condensate recovery tank?		psig
$({f I}, {$	+ ② + ③ =	psig
*3. Safety Factor The margin of safety which is determined by the operating characteristics o the "safety factor." The safety factor required will differ according to the typ The discharge rate table for each model shows the values for condensate di the maximum rated condensate load on the equipment should correspond discharge rate by the safety factor (see Steam Trap Application Guide on op	e of trap (type of co scharge when the tr to the value obtained posite page).	ndensate discharge). ap is fully open, and

STEAM TRAP APPLICATION GUIDE

This guide is designed to direct the user to a General Steam Trap Technology section. Once a technology is selected, additional details, regarding specific steam traps, can be found in the catalog under the Technology Selection tab. These choices, in the Guide, are based on many years of steam trap manufacturing experience. The choices, however are not limited to these alone. Variations in individual systems (superheat, water hammer, insulation, etc.), as well as personal preference, should be taken into consideration.

Application		Thermo- static	Thermo- dynamic	Free Float	Inverted Bucket	Float & Thermostatic	Orifice	Minimum Safety Factor
Drip & Traci	ng							
Main Drip	to 30 PSIG to 300 PSIG to 650 PSIG to 2500 PSIG	1 1 1	2 2	2 3	3 2	2 3 3	4 3 2 1	1.5:1 1.5:1 1.5:1 1.5:1 1.5:1
Steam Tracing		1	2	2	2	2	3	1.5:1
Process								
Heat Exchanger	to 20 PSIG to 150 PSIG to 300 PSIG to 600 PSIG	2 1 1		1 1 1 1	2 2 2	1 1 1		2:1 2:1 2:1 2:1 2:1
Cooker/Reactor	to 15 PSIG to 60 PSIG to 150 PSIG to 600 PSIG	2 1 1 2		1 1 1 1	3 3 3	1 1 1		3:1 3:1 3:1 3:1
Pressing	to 100 PSIG to 300 PSIG	1 1	2	1 2	2 2	1		3:1 3:1
Reboiler		2		1	3	1		2:1
Rotating Cylinder	S	2*		1*	2		3	3:1
Sterilizer		1		2		2		2:1
Tank Heating	Storage Line Heater	1 1		2 2		2 2		1.5:1 3:1
Evaporator				1	2	2		2:1
HVAC								
Air Heating Coils	to 15 PSIG to 60 PSIG to 250 PSIG	2 2 2		1 1 1	3 2	1 1		2:1 2:1 3:1
Radiator		1					4	2:1
Unit Heater		1		1	2	1		2:1
Absorption Chille	r	2		1	2	1		2:1

*Requires Steam Lock Release

KEY Blank = not recommended

1 = First Choice 3 = Third Choice

2 = Second Choice 4 = Fourth Choice

STEAM TRAP SELECTION CRITERIA MATRIX

	Thermostatic	Thermodynamic	N	lechanical	Orifice	Free	
FUNCTION			F & T	IB		Float	
Response to Load Changes	Moderate	Slow	Fast	Moderate	Very Slow	Fast	
Air Venting	High	Low	Med/High	Low	Low	High	
Thermal Efficiency	High	Medium	Med/High	Medium	High⁺	Med/High	
Applications	Drip Legs Tracing Process Eqpt.	Drip Legs Tracing	Drip Legs Process Eqpt.	Drip Legs Process Eqpt.	Drip Legs	Drip Legs Process Eqpt.	
Affected By Ambient Temperatures	No (unless ir	Yes nsulated)	(susceptible	No to freezing)	No	No (may freeze)	
Relative Cost	Low	Low	Meduim	Med/Low	Low	Meduim	
Capacity	Medium	Low	H	ligh	Low	High	
Pressure Range	to 650 psi	10 to 600 psi	to 650 psi	to 250 psi	to 2500 psi	to 650 psi	
Size vs. Capacity	Small	Medium	Large		Small	Large	
Life Expectancy	Moderate	Moderate	Moderate	Moderate	Long	Long	
Ease of Maintenance	Very Easy	Very Easy	Мос	lerate	Very Easy	Moderate	
Orientation Limits	No	No	Y	⁄es	No	Yes	

† Within narrow load range.

NICHOLSON STEAM TRAP OPTIONS

Steam Lock Release (SLR) Orifice

Specify where immediate elimination of condensate and improved sensitivity is desired. This option may also improve performance in applications where condensate must be lifted upstream from the trap. Allows continuous discharge of condensate. Trap will nominally pass 50 lb/hr of condensate at 50 psi within 2°F of saturated temperature.

Skirted Seat Trim

Recommended for higher pressure service, often over 300 psi. Minimizes erosion by dispersing trap discharge.

Sterilizer Trim

Specify where immediate elimination of condensate and improved sensitivity is desired. Shorter seat opens more quickly in presence of condensate. Hotter discharge temperature.

Internal Strainer

Recommended where steam may be contaminated with pipe scale or other particulate matter. Screen reduces deposits on valve and seat.

Blowdown Valve

Specify to clean strainer area and remove debris trapped before strainer. Also used to determine whether steam or water is present before the steam trap.

ISO Filled Actuator

Specify to reduce flash steam, provide highest thermal efficiency and/or air vent operation is desired. This option will subcool condensate by approximately 40°F. For use in applications above 500 psig and/or for superheated steam.

Welded Actuator

Specify where long service life and/or fail open operation is desired.

Continuous Bleed Air Vent

Replaces thermostatic air vent with a 1/32 inch orifice.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

LIQUIDATOR 450 Series Thermostatic Applications Laundry Equipment Steam Trap

- Unit Heaters
- Steam Tracing
- Drip Legs
- Tire Presses
- Air Vents
- Plating Tanks
- Platen Presses
- Cooking Equipment

Durability and Long Service Life

Pressures To 450 PSIG

Temperatures to 600°F

Stainless steel body and cover with stainless steel welded actuator for maximum corrosion. thermal and hydraulic shock resistance.

Rapid Startup with Outstanding Air Handling

Thermostatic action responds quickly to eliminate air and other non-condensibles. Large startup capacity.

Water Tight Seal

Hardened stainless steel valve and seat lapped as a matched set assure tight seal and long life.

> **3 Year Guarantee** Guaranteed against defects in material and workmanship.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

Easily Maintained

Four bolt cover permits easy in-line rebuilding for less than the cost of replacement.

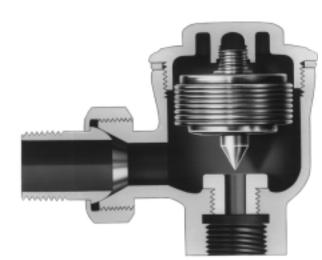
Excellent Energy Savings

Positive shutoff and thermostatic action assure no loss of steam during normal operation.

Fits all Universal Connectors Liquidator body will replace any manufacturers' universal mount trap body.

Easily Replaced

Two bolt design permits rapid removal without breaking pipe connections.


Freeze Proof Self draining when installed vertically.

Optional Integral Strainer

Helps prevent dirt and scale build-up on valve seat.

THERMOSTATIC Steam Traps

NICHOLSON is the originator of the bellows actuated Thermostatic Steam Trap. **NICHOLSON**'s thermostatic product range spans applications from critical tracing to high capacity process. High sensitivity, immediate air venting and exceptional thermal efficiency are the hallmark of **NICHOLSON** Thermostatic Steam Traps.

- Steam Tracing
- Drip Legs
- Automatic Air Vents
- Sterilizers
- Cooking Kettles
- Water Heaters
- Laundry Equipment
- Radiators
- Process Equipment
- Air Handlers

OPTIONS See page 9

- ST Sterilizer Trim (1/4 & 5/16 orifice sizes)
- SLR SLR Orifice
- S Internal Stainless Strainer
- ISO ISO Filled Actuator
- HC High Capacity

Canadian Registration # 0E0591.9

N125 SERIES THERMOSTATIC STEAM TRAPS

Pressures to 125 PSIG (8.75 barg) Temperatures to 400°F (204°C)

Superior Performance — Hardened valve and seats are lapped in matched sets, providing tight shutoff and long service life.

Improved Energy Savings — Maximum elimination of air and non-condensibles-trap closes at saturated steam temperature.

Temperature Sensitive Actuators — One moving part. Stainless Steel, fail open or fail closed, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Freeze Proof — Threaded male union horizontal inlet and vertical outlet–self draining.

In-line Maintenance — Threaded cover for one step removal, inspection and service without breaking pipe connections.

Air Vent — Efficient steam service air vent when equipped with ISO Bellows and installed in air vent location.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

MODELS*

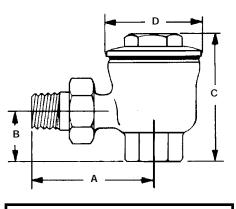
- N125 Standard capacity
- N125L Low capacity
- N125HC High capacity
- N125ST-FC Standard capacity w/sterilizer seat
- N125STHC-FC-High capacity w/sterlizer seat

*Add (-FC) for fail closed or (-FO) for fail open to end of model number

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load. Restricted orifice in N125L (small opening at bottom of valve seat) prevents trap from discharging continuously on light loads.

N125 SERIES THERMOSTATIC STEAM TRAPS SPECIFICATION

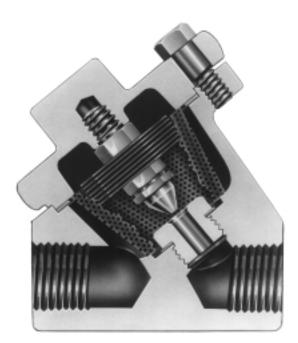

Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required, SLR orifice and Sterilizer trim will be available to allow condensate evacuation at or near saturated temperatures. Where subcooling of condensate is desired alternate thermostatic actuator will be available to allow condensate evacuation at or near 40°F below saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. A minimum of three orifice sizes shall be available allowing for custom capacity sizing. Trap shall be bronze bodied suitable for pressures through 125 psig and available in 3/8" through 3/4" NPT connections.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure TMO: Max. Operating Temperature	(8.75 barg) (204°C)
PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature	(8.75 barg) (204°F)

MATERIALS OF CONSTRUCTION

Body & Cover	ASTM B283 C37700
Actuator	Welded Stainless Steel
Cover Gasket	Copper Jacketed
Valve & Seat	Hardened 416 Stainless Steel



Connections: 3/8"-3/4" NPT

Dimensions										
Size		Weight Ib								
0120	Α	В	с	D	(kg)					
3%, 1/2	2¾	1%	2%	²⁵ / ₃₂	1.5					
	(70)	(29)	(73)	(54)	(.68)					
3/4	3¾₀ (81)	1%₀ (40)	3 (76)	²⁵ / ₃₂ (54)	1.8 (.82)					

Maximun	Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)										
Trap	Orifice	Differential PSIG (barg)									
	Inch	5	10	20	50	100	125				
	(mm)	(0.34)	(0.7)	(1.4)	(3.5)	(6.9)	(8.6)				
N125L	1/8	216	265	375	592	778	838				
	(3)	(98)	(120)	(170)	(269)	(354)	(383)				
N125	1/4	550	825	1210	1975	2825	3140				
N125ST	(6)	(249)	(374)	(549)	(896)	(1281)	(1424)				
N125HC	5/16	860	1220	1725	2725	3575	3850				
N125STHC	(8)	(390)	(554)	(783)	(1237)	(1623)	(1748)				

Nicholson recommends ISO filled Actuator for superheated steam.

- Unit Heaters
- Air Vents
- Steam Tracing
- Drip Legs
- Platen Presses
- Plating Tanks
- Sterilizers
- Tire Presses
- Cooking Equipment
- Laundry Equipment
- Other Process Equipment

OPTIONS See page 9

- SK Skirted Seat*
- SLR SLR Orifice
- ISO ISO Filled Actuator*
- S Internal SS Strainer (std. on N451)
 ST Starilizer Trime
- ST Sterilizer Trim
- SW Socketweld
- *Not available on N451

Canadian Registration # 0E0591.9

N450 SERIES THERMOSTATIC STEAM TRAPS

Pressures to 450 PSIG (31 barg) Temperatures to 600°F (316°C)

Compact — Easy to Install.

Inexpensive — Low initial cost.

Improved Energy Savings — High efficiency–maximum elimination of air and non-condensibles.

Temperature Sensitive Actuators — One moving part. Stainless Steel, fail open, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Hardened Stainless Steel Valve and Seat — Long life. Lapped as a matched set for water tight seal.

Easily Maintained — Can be inspected and serviced without breaking pipe connections.

Freeze Proof — Self draining when installed vertically.

For Superheated Steam Applications — Because the trap closes at saturated steam temperature, superheated steam cannot reach trap.

Air Vent — Efficient steam service air vent when equipped with ISO filled Actuator and installed in air vent location.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

Positive Shutoff and Long Life — Integral Stainless Steel Strainer helps prevent debris depositing on valve and seat.

MODELS*

- N451-FO-Low capacity, fail open only
- N452–Reduced capacity
- N453–Standard capacity
- N454–High capacity

*Add (-FC) for fail closed or (-FO) for fail open to end of model number

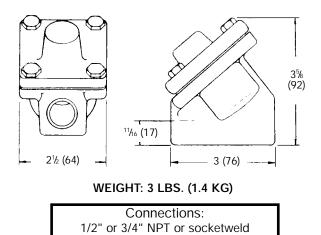
OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator, lowering internal

pressure.

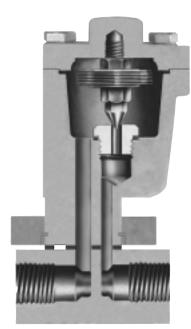
Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load. Restricted orifice in the N451 seat (small opening at bottom of valve seat) prevents trap from discharging continuously on light loads such as are encountered on tracer lines.

N450 SERIES THERMOSTATIC STEAM TRAPS SPECIFICATIONS


Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required, SLR orifice and Sterilizer trim will be available to allow condensate evacuation at or near saturated temperatures. Where subcooling of condensate is desired alternate thermostatic actuator will be available to allow condensate evacuation at or near 40°F below saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. A minimum of three orifice sizes shall be available allowing for custom capacity sizing. Trap shall be forged carbon steel bodied suitable for pressures through 450 psig and available in 1/2" and 3/4" NPT or socket weld.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure† 450 psig TMO: Max. Operating Temperature 600°F	(31 barg) (316°C)
PMA: Max. Allowable Pressure450 psigTMA: Max. Allowable Temperature750°F	(31 barg) (399°C)
† Consult factory for pressures greater than 300 psi.	


MATERIALS OF CONSTRUCTION

Body	ASTM A105 Forged Steel
Cover	ASTM A351 Grade CF8 (304)
Cover Gasket	304 SS Spiral Wound w/Graphite Fill
Actuator	Welded Stainless Steel
Strainer	
Valve & Seat .	Hardened 416 Stainless Steel

Maximu	Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)													
Trop	Orifice		Differential PSIG (barg)											
Тгар	Inch	5	10	20	50	100	125	150	200	250	300 [.]	350 ⁻	400 [.]	450 ⁻
	(mm)	(0.34)	(0.7)	(1.4)	(3.4)	(6.7)	(8.4)	(10.1)	(13.4)	(16.8)	(20.1)	(24.1)	(27.6)	(31.0)
N451	5/64	84	119	168	265	348	375	398	439	472	502	529	553	575
	(2)	(38)	(54)	(76)	(120)	(158)	(170)	(181)	(199)	(214)	(228)	(240)	(251)	(261)
N452	1/8	216	265	375	592	778	838	890	980	1055	1121	1180	1235	1284
	(3)	(98)	(120)	(170)	(269)	(354)	(381)	(405)	(445)	(480)	(510)	(536)	(561)	(584)
N453	1/4	550	825	1210	1975	2825	3140	3425	3650	3960	4100	4230	4420	4600
	(6)	(249)	(374)	(549)	(896)	(1281)	(1424)	(1554)	(1656)	(1796)	(1860)	(1919)	(2005)	(2086)
N454	5/16	860	1220	1725	2725	3575	3850	4090	4505	4850	5155	5425	5675	5900
	(8)	(390)	(554)	(783)	(1237)	(1623)	(1748)	(1857)	(2045)	(2202)	(2340)	(2463)	(2576)	(2679)

* Nicholson recommends skirted seat above 300 PSIG (20.7 bar). Nicholson recommends ISO filled Actuator for superheated steam.

UMT SERIES TRAP AND UMTC CONNECTOR

APPLICATIONS

- Unit Heaters
- Steam Tracing
- Drip Legs
- Tire Presses
- Cooking Equipment
- Laundry Equipment
- Plating Tanks
- Platen Presses
- Air Vents

OPTIONS

- SLR SLR Orifice*
- ISO ISO Filled Actuator*
- SW Socketweld
- B Blowdown Valve

*Not available on UMT451T

Canadian Registration # OE1388.6

For information on Big Block UMTVS-BB Connector SEE PAGE 116

OPERATING PRINCIPLE

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator,

LIQUIDATOR 450 SERIES UNIVERSAL MOUNT THERMOSTATIC STEAM TRAPS

Pressures to 450 PSIG (31 barg) Temperatures to 600°F (316°C)

Easily Maintained — Universal two bolt swivel mounting simplifies removal from system. Kits allow flexibility to replace or rebuild.

Simple Installation — Stainless mounting block mounts permanently into system. Trap installs via two bolt universal connection.

Improved Energy Savings — High efficiency–maximum elimination of air and non-condensibles.

Temperature Sensitive Actuators — One moving part. Stainless Steel, fail open, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Hardened Stainless Steel Valve and Seat — Long life. Lapped as a matched set for water tight seal.

Easily Maintained — Can be inspected and serviced without breaking pipe connections.

Freeze Proof — Self draining when installed vertically.

For Superheated Steam Applications — Because the trap closes at saturated steam temperature, superheated steam cannot reach trap.

Air Vent — Efficient steam service air vent when equipped with ISO filled Actuator and installed in air vent location.

Guaranteed — Traps are guaranteed against defects in materials or workmanship for three years.

Positive Shutoff and Long Life — Integral Stainless Steel Strainer helps prevent debris depositing on valve and seat.

MODELS

- UMT-TD10L-Low Capacity Trap
- UMT-TD10–Standard Capacity Trap
- UMTC–Standard connector (1/2" & 3/4" only)
- UMTCY-RH-Right Hand Connector w/Y strainer*
- UMTCY-LH-Left Hand Connector w/Y strainer*
- UMTVS-BB-Connector with Isolation Valves, Strainer, Blowdown Valve and Test Port

For complete unit, order trap and connector as separate items.

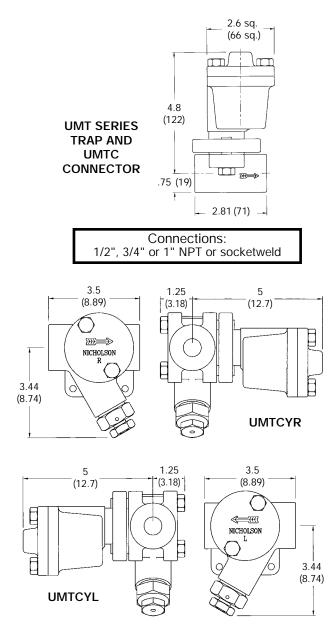
*Add (-B) for Blowdown Valve.

lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load. Restricted orifice in UMT451T (small opening at bottom of valve seat) prevents trap from discharging continuously on light loads such as are encountered on tracer lines.

NICHOLSON

LIQUIDATOR 450 SERIES UNIVERSAL MOUNT THERMOSTATIC STEAM TRAPS

SPECIFICATIONS


Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required, SLR orifice and Sterilizer trim will be available to allow condensate evacuation at or near saturated temperatures. Where subcooling of condensate is desired alternate thermostatic actuator will be available to allow condensate evacuation at or near 40°F below saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. A minimum of two orifice sizes shall be available allowing for custom capacity sizing. Trap shall be stainless steel bodied suitable for pressures through 450 psig. Trap connection shall be two bolt universal swivel mount. Mounting block shall be stainless steel and available in 1/2" through 1" NPT or socket weld.

MAXIMUM OPERATING CONDITIONS

PMO:	with Welded Stainless Actuator Max. Operating Pressure Max. Operating Temperature	r 450 psig 600°F	(31 barg) (316°C)
PMO:	with Welded Stainless Actuator Max. Operating Pressure Max. Operating Temperature	r, ISO 450 psig 600°F	(31 barg) (316°C)
	os Max. Allowable Pressure Max. Allowable Temperature	450 psig 750°F	(31 barg) (399°C)

MATERIALS OF CONSTRUCTION

Body & Cover	ASTM A351 Grade CF8 (304)
Cover Gasket	
	w/graphite fill
Actuator	Welded SS
Strainer	033 perf. 304 Stainless Steel
Valve & Seat	Hardened 416 Stainless Steel
Mounting Block	ASTM A351 Grade CF8 (304)

Dimensions - inches (mm) Weight Trap - 3.2 lbs. (1.4 kg) Std. Mounting Block - 1.1 lbs. (0.5 kg) Y Strainer Mounting Block - 2.3 lbs. (1.0 kg)

Maximur	Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)														
Tron	Orifice Differential PSIG (barg)														
Тгар	Inch	5	10	20	50	100	125	150	200	250	300⁺	350	400	450	
	(mm)	(0.34)	(0.7)	(1.4)	(3.4)	(6.7)	(8.4)	(10.1)	(13.4)	(16.8)	(20.1)	(24.1)	(27.6)	(31.0)	
UMT451T	5/64	84	119	168	265	348	375	398	439	472	502	529	553	575	
	(2)	(38)	(54)	(76)	(120)	(158)	(170)	(181)	(199)	(214)	(228)	(240)	(251)	(261)	
UMT452T	1/8	216	265	375	592	778	838	890	980	1055	1121	1180	1235	1284	
	(3)	(98)	(120)	(170)	(269)	(354)	(381)	(405)	(445)	(480)	(510)	(536)	(561)	(584)	
UMT453T	1/4	550	825	1210	1975	2825	3140	3425	3650	3960	4100	4230	4420	4600	
	(6)	(249)	(374)	(549)	(896)	(1281)	(1424)	(1554)	(1656)	(1796)	(1860)	(1919)	(2005)	(2086)	

ISO filled Actuator recommended for superheated steam.

- Unit Heaters
- Air Vents
- Steam Tracing
- Drip Legs
- Platen Presses
- Plating Tanks
- Sterilizers
- Tire Presses
- Cooking Equipment
- Laundry Equipment
- Other Process Equipment

OPTIONS See page 9

- ISO ISO Filled Actuator
- SLR SLR Orifice
- SW Socketweld

Canadian Registration # 0E0591.9

TA SERIES THERMOSTATIC STEAM TRAPS

Pressures To 650 PSIG (44.8 barg) Temperatures to 750°F (400°C)

Sealed Stainless Steel Body — Lightweight, compact and corrosion resistant. No bolts or gaskets. Eliminates body leaks.

Self Centering Valve — Leak tight shutoff. Improved energy savings. Assembly of actuator and valve to impingement plate allows valve to self-align with center of valve seat orifice. Provides long lasting valve and seat.

Temperature Sensitive Actuators — One moving part. Stainless Steel, fail open or fail closed, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

For Superheated Steam Applications — Because the trap closes at saturated steam temperature, superheated steam cannot reach trap.

Thermal and Hydraulic Shock Resistant — Impingement plate plus welded construction prevent damage to actuator.

Hardened Stainless Steel Valve and Seat — Long life. Lapped as a matched set for water tight seal.

Inexpensive — Low initial cost.

Maintenance Free — Sealed unit. Replacement traps cost less than repair of more expensive in-line repairable traps.

Freeze Proof — Self draining when installed vertically.

Directional Discharge — Pipe thread erosion prevented by directing discharge to center of pipe.

Air Vent — Efficient steam service air vent when equipped with ISO Bellows and installed in air vent location.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

MODELS*

- TA502–Reduced capacity
- TA503–Standard capacity
- TA504–High capacity

*Add (-FC) for fail closed or (-FO) for fail open to end of model number

OPERATION

Thermal actuator is filled at it's free length with a liquid having a lower boiling point than water. As assembled, valve is normally open. When very hot condensate enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from the actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load. Restricted orifice in TA502 (small opening at bottom of valve seat) prevents trap from discharging continuously on light loads such as are encountered on tracer lines.

TA SERIES THERMOSTATIC STEAM TRAPS SPECIFICATION

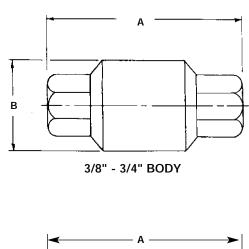
Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required or protection from flash steam locking, a SLR orifice shall be available to allow condensate and flash steam evacuation at or near saturated temperatures. Where subcooling of condensate is desired alternate thermostatic actuator will be available to allow condensate evacuation at or near 40°F below saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. A minimum of three orifice sizes shall be available allowing for custom capacity sizing. Trap shall be stainless steel bodied suitable for pressures to 650 psig and available in 3/8" through 1" NPT or socketweld.

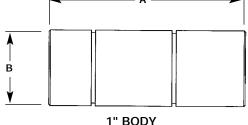
MAXIMUM OPERATING CONDITIONS

Standard Traps

PMO: Max. Operating Pressure 500 psig (34.5 barg) TMO: Max. Operating Temperature 600°F (316°C)

ISO Option Traps


PMO: Max. Operating Pressure 650 psig (44.8 barg) TMO: Max. Operating Temperature 650°F (343°C)


All Traps

PMA: Max. Allowable Pressure 650 psig (44.8 barg) TMA: Max. Allowable Temperature 750°F (400°C)

MATERIALS OF CONSTRUCTION

Body & Cove	erASTM A351 Grade CF3M (316L)
Actuator	Welded Stainless Steel
Valve & Sea	Hardened 416 Stainless Steel

Connections: 3/8" – 1" NPT or socketweld

Dimensio NPT or	inc	hes	Weight		
Socket	(m	Lbs.			
weld	A	(kg)			
3/ _{8,} 1/2"	3 ^{3/4}	1 ³ /4	1.1		
	(95)	(44)	(0.5)		
3/4"	3 ^{15/16}	1 ³ /4	1.2		
	(100)	(44)	(0.54)		
1"	4 ^{3/8}	1 ³ /4	1.6		
	(111)	(44)	(0.73)		

Maximu	Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)																	
Trap	Orifice		Differential PSIG (barg)															
Пар	Inch	5	10	20	50	100	125	150	200	250	300	350	400	450	500	550*	600*	650*
	(mm)	(0.34)	(0.7)	(1.4)	(3.5)	(6.9)	(8.62)	(10.3)	(13.8)	(17.2)	(20.7)	(24.1)	(27.6)	(31.0)	(34.5)	(37.9)	(41.4)	(44.8)
TA502	1/8	216	265	375	592	778	838	890	980	1055	1121	1180	1235	1284	1331	1377	1425	1471
	(3)	(98)	(120)	(170)	(269)	(354)	(381)	(405)	(445)	(480)	(510)	(536)	(561)	(584)	(604)	(625)	(646)	(667)
TA503	1/4	550	825	1210	1975	2825	3140	3425	3650	3960	4100	4230	4420	4600	4760	4910	5060	5190
	(6)	(249)	(374)	(549)	(896)	(1281)	(1424)	(1554)	(1656)	(1796)	(1860)	(1919)	(2005)	(2086)	(2161)	(2232)	(2297)	(2359)
TA504	5/16 (8)	860 (390)	1220 (554)	1725 (783)	2725 (1237)	3575 (1623)	3850 (1748)	4090 (1857)	4505 (2045)		5155 (2340)	5425 (2463)	5675 (2576)	5900 (2679)	6110 (2774)	6310 (2868)	6480 (2945)	6625 (3011)

* Nicholson recommends ISO filled Actuator above 500 psi (34.5 bar) and for superheated steam.

- Unit Heaters
- Air Vents
- Steam Tracing
- Drip Legs
- Platen Presses
- Plating Tanks
- Sterilizers
- Tire Presses
- Cooking Equipment
- Laundry Equipment
- Other Process Equipment

OPTIONS See page 9

- B Blowdown Valve
- ISO ISO Filled Actuator*
- SK Skirted Seat*
- SLR SLR Orifice
- SW Socketweld

*Not available on N651

Canadian Registration # 0E0591.9

N650 SERIES THERMOSTATIC STEAM TRAPS

Pressures To 650 PSIG (44.8 barg) Temperatures to 750°F (400°C)

Positive Shutoff — Valve and seats are lapped in matched sets, providing tight shutoff for light and no-load conditions which results in improved energy savings.

Freeze Proof — Self draining when installed vertically.

Compact–Easy to Install — Ample extension for pipe wrench provided.

Easily Maintained — Actuator element and valve are attached to cover to facilitate inspection and servicing. Optional stainless blowdown valve permits easy strainer cleaning while in service.

Directional Discharge — Pipe and thread erosion prevented by directing condensate to center of discharge pipe.

Hardened Stainless Steel Valve and Seat — Long life. Lapped as a matched set for water tight seal.

Temperature Sensitive Actuators — One moving part. Stainless Steel, fail open or fail closed, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Positive Shutoff and Long Life — Integral Stainless Steel Strainer helps prevent debris from depositing onto valve and seat.

Strainer — Integral Stainless Steel Strainer standard on all models.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

MODELS*

- N651-FO-Y pattern body w/strainer and blowdown port tapped & plugged; low capacity, fail open
- N652–Reduced capacity
- N653–Standard capacity
- N654–High capacity

*Add (-FC) for fail closed or (-FO) for fail open to end of model number

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load. Optional blowdown valve allows fast and easy cleaning of internal strainer without removing trap from operation.

N650 SERIES THERMOSTATIC STEAM TRAPS SPECIFICATION

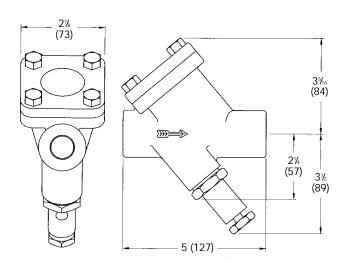
Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required or protection from flash steam locking, a SLR orifice will be available to allow condensate and flash steam evacuation at or near saturated temperatures. Where subcooling of condensate is desired alternate thermostatic actuator will be available to allow condensate at or near 40°F below saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. A minimum of four orifice sizes shall be available allowing for custom capacity sizing. Trap shall be forged carbon steel Y pattern body with strainer and available blow down valve suitable for pressures to 650 psig and available in 1/2" and 3/4" NPT or socketweld.

MAXIMUM OPERATING CONDITIONS

Standard Traps

PMO: Max. Operating Pressure 500 psig (34.5 barg) TMO: Max. Operating Temperature 600°F (316°C))

ISO Option Traps

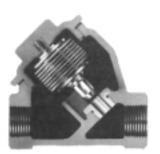

PMO: Max. Operating Pressure 650 psig (44.8 barg) TMO: Max. Operating Temperature 650°F (343°C)

All Traps

PMA: Max. Allowable Pressure 650 psig (44.8 barg) TMA: Max. Allowable Temperature 750°F (400°C)

MATERIALS OF CONSTRUCTION

Body & Cover	ASTM A105 Forged Steel
Actuator	Welded Stainless Steel
Cover Gasket	304 SS Spiral Wound w/Graphite Fill
Strainer	
Blowdown Val	ve416 Stainless Steel
Valve & Seat .	Hardened 416 Stainless Steel



SHOWN WITH OPTIONAL BLOWDOWN VALVE WEIGHT: 5 LBS. (2.3 KG)

Connections: 1/2" or 3/4" NPT or socketweld

Maximu	Maximum Capacity—lbs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)																	
Trap	Orifice		Differential PSIG (barg)															
Пар	Inch	5	10	20	50	100	125	150	200	250	300	350	400	450	500	550	600	650
	(mm)	(0.34)	(0.7)	(1.4)	(3.5)	(6.9)	(8.62)	(10.3)	(13.8)	(17.2)	(20.7)	(24.1)	(27.6)	(31.0)	(34.5)	(37.9)	(41.4)	(44.8)
N651	5/64	84	119	168	265	348	375	398	439	472	502	529	553	575	595	615	635	650
	(2)	(38)	(54)	(76)	(120)	(158)	(170)	(181)	(199)	(214)	(228)	(240)	(251)	(261)	(270)	(280)	(289)	(295)
N652	1/8	216	265	375	592	778	838	890	980	1055	1121	1180	1235	1284	1331	1377	1425	1471
	(3)	(98)	(120)	(170)	(269)	(354)	(381)	(405)	(445)	(480)	(510)	(536)	(561)	(584)	(604)	(625)	(646)	(667)
N653	1/4	550	825	1210	1975	2825	3140	3425	3650	3960	4100	4230	4420	4600	4760	4910	5060	5190
	(6)	(249)	(374)	(549)	(896)	(1281)	(1424)	(1554)	(1656)	(1796)	(1860)	(1919)	(2005)	(2086)	(2161)	(2232)	(2297)	(2359)
N654	5/16 (8)	860 (390)	1220 (554)	1725 (783)	2725 (1237)	3575 (1623)	3850 (1748)	4090 (1857)	4505 (2045)	4850 (2202)		5425 (2463)	5675 (2576)	5900 (2679)	6110 (2774)	6310 (2868)	6480 (2945)	6625 (3011)

Nicholson recommends ISO filled Actuator above 500 psi (34.5 bar) and for superheated steam. Nicholson recommends skirted seat above 300 psi (20.7 bar).

Shown in AHV Configuration

- Unit Heaters
- Sterilizers
- Air Vents
- Autoclaves
- Dry Kilns
- Dryers
- Flash Tanks
- Small Heat Exchangers
- Plating Tanks
- Cookers
- Kettles
- Other Process Equipment

OPTIONS See page 9

- ST Sterilizer Trim
- SLR SLR Orifice
- HC High capacity orifice

Canadian Registration # 0E0591.9

ACHIEVER "A" SERIES THERMOSTATIC STEAM TRAPS

Pressures To 200 PSIG (13.8 barg) Temperatures to 400°F (204°C)

Temperature Sensitive Actuator — One moving part stainless steel welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Improved Energy Savings — Maximum elimination of air and non-condensibles–trap closes at saturated steam temperature.

Compact — Requires minimum space and provides condensate capacities equal to larger mechanical traps.

Freeze Proof — Type A with horizontal inlet and vertical outlet. Type AHV when installed vertically (outlet down) or horizontally on side (cover perpendicular to ground).

Renewable In-line — With factory packaged, precision matched internal parts kits.

Superior Performance — Fast response to changing pressure and condensate loads. Maximum air handling capability.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

MODELS

- A33–1/2" right angle trap
- A43–3/4" right angle trap
- A53–1" right angle trap
- AHV33-1/2" straight thru trap
- AHV43–3/4" straight thru trap
- AHV53–1" straight thru trap

*Add (-HC) to end of model number for high capacity.

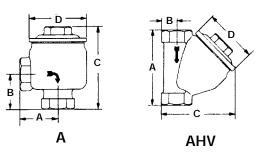
OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load.

ACHIEVER "A" SERIES THERMOSTATIC STEAM TRAPS SPECIFICATION

Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required, SLR orifice and Sterilizer trim shall be available to allow condensate evacuation at or near saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. A minimum of two orifice sizes shall be available allowing for custom capacity sizing. Trap shall be bronze bodied suitable for pressures through 200 psig and available in 1/2" through 1" NPT connections.

MAXIMUM OPERATING CONDITIONS


PMO: Max. Operating Pressure TMO: Max. Operating Temperature	(13.8 barg) (204°C)
PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature	(13.8 barg) (204°C)

MATERIALS OF CONSTRUCTION

Body & Cover	ASTM B283 C37700
Actuator	Welded Stainless Steel
Cover Gasket	Copper Jacketed
Valve & Seat	Hardened 416 Stainless Steel

Dimensions													
	Pipe Size		Weight										
Trap	inches	А	В	с	D	lb (kg)							
A33	1/2	2 (41)	1% (106)	4¾₀ (76)	3 (1.5)	3.3 (1.5)							
A43	3/4	2 (47)	1½ (113)	4 ⁷ /₁₀ (76)	3 (1.5)	3.3 (1.5)							
A53	1	2 ¹ % (56)	2¾ (125)	4 ¹⁵ /16 (76)	3 (2.2)	4.8 (2.1)							
AHV33	1/2	4 (19)	³ / ₄ (98)	3½ (76)	3 (1.4)	3.1 (1.4)							
AHV43	3/4	4¼ (22)	% (108)	4¼ (76)	3 (1.6)	3.6 (1.6)							
AHV53	1	5% (25)	1 (116)	4%₀ (76)	3 (2.4)	5.3 (2.4)							

Maximum Capad	Aximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)															
Orifice Differential PSIG (barg)																
Тгар	inch	1	2	5	10	15	20	40	50	60	80	100	125	150	175	200
	(mm)	(0.07)	(0.14)	(0.34)	(0.69)	(1.03)	(1.4)	(2.8)	(3.4)	(4.1)	(5.5)	(6.9)	(8.6)	(10.3)	(12.1)	(13.8)
1/2" A33, AHV33	5/16	785	1050	1650	2325	2575	2825	3295	3815	4200	4675	5035	5535	5720	6085	6210
3/4" A43, AHV43	(8)	(357)	(477)	(750)	(1057)	(1170)	(1284)	(1498)	(1734)	(1909)	(2125)	(2289)	(2516)	(2600)	(2766)	(2823)
1" A53, AHV53	3/8	985	1390	2180	3070	3255	3735	4225	5040	5480	5990	6645	7315	7560	8045	8200
1 A33, AHV35	(10)	(448)	(632)	(991)	(1395)	(1480)	(1698)	(1920)	(2291)	(2491)	(2723)	(3020)	(3325)	(3436)	(3657)	(3727)
1/2"- 1"	1/2	1140	1610	2545	3600	4405	5090	7195	8045	8810	9800	10560	11375	12090	12725	13305
All High Capacity "HC"	(13)	(518)	(732)	(1157)	(1636)	(2002)	(2314)	(3270)	(3657)	(4005)	(4455)	(4800)	(5170)	(5495)	(5784)	(6048)

Connections: 1/2" - 1" NPT

- Unit Heaters
- Pipe Coils
- Blast Coils
- Steam Mains
- Dry Kilns
- Jacketed Kettles
- Hot Water Heaters
- Dryers (all types)
- Large Heat Exchangers

OPTIONS See page 9

- SLR SLR Orifice
- HC High capacity orifice

Canadian Registration # 0E0591.9

BELIEVER "B" SERIES THERMOSTATIC STEAM TRAPS

Pressures To 250 PSIG (17.2 barg) Temperatures to 450°F (232°C)

Freeze Proof — When installed on side with cover perpendicular to ground.

Renewable In-line — Renew trap in-line with factory packaged precision matched internal parts, replacement kits.

Compact — Requires minimum space while providing condensate capacities equal to larger mechanical traps.

Superior Performance — Maximum air handling capability. Immediate response to changing pressure and condensate loads. No adjustment necessary.

Sensitivity — Increased when installed on side with cover perpendicular to ground.

Temperature Sensitive Actuators — One moving part, stainless steel, fail open or closed, welded actuator provides maximum corrosion, thermal and hydraulic shock resistance and sensitivity.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

MODELS

- B33-1/2" straight thru trap
- B43-3/4" straight thru trap
- B53–1" straight thru trap
- B63-1-1/4" straight thru trap
- B73*-1-1/2" straight thru trap
- B83*-2" straight thru trap

*Add (-HC) to end of model number for high capacity.

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow.

As condensate collects, it takes heat from thermal actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load.

BELIEVER "B" SERIES THERMOSTATIC STEAM TRAPS SPECIFICATION

Steam trap shall be of balanced pressure design with stainless steel welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required or protection from flash steam locking, a SLR orifice will be available to allow condensate and flash steam evacuation at or near saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. Trap shall be cast iron or cast steel bodied suitable for pressures to 250 psig and available in 1/2" through 2" NPT.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure250 psig(17.2 barg)TMO: Max. Operating Temperature450°F(232°C)PMA: Max. Allowable Pressure250 psig(17.2 barg)TMA: Max. Allowable Temperature450°F(232°C)

MATERIALS OF CONSTRUCTION

Body & Cover:	Cast Iron ASTM A278 Class 30
Actuator:	Welded Stainless Steel
Cover Gasket:	Graphite
Valve & Seat:	Hardened 416 Stainless Steel

Dimensio	ns										
	Pipe		Inches (mm)								
Trap	Size inches	Α	В	с	D	lb (kg)					
B33	1/2	3% (98)	1½ (29)	5% (149)	4½ (114)	7 (3.2)					
B43	3/4	4¼ (108)	1¾ (35)	6¾ (171)	5‰ (129)	10.3 (4.7)					
B53	1	5½ (140)	1% (48)	7 ¹ ‰ (195)	5 ¹³ /16 (148)	15.6 (7.1)					
B63	1 1/4	5½ (140)	1% (48)	7 ¹ ‰ (195)	5 ¹³ /16 (148)	15.3 (7.0)					
B73	1 1/2	7¼ (184)	1¾ (44)	9 ¹ / ₆ (230)	7¾ (197)	33.6 (15.3)					
B83	2	7¼ (184)	1¾ (44)	9 ¹ %6 (230)	7¾ (197)	32.4 (14.7)					

Maximum	Capac	ity—l	bs/hr	[.] 10°F	Belo	w Sa	turati	on (k	(g/hr	5°C E	Below	Satu	ratio	n)	
Trap	Pipe Size	Orifice						Differe	ntial PS	IG (bar	g)				
Пар	Inch	Inch (mm)	1 (.07)	2 (.14)	5 (0.34)	10 (0.7)	20 (1.4)	50 (3.5)	100 (6.9)	125 (8.6)	150 (10.3)	175 (12.1)	200 (13.8)	225 (15.5)	250 (17.2)
B33	1/2	3/8 (10)	985 (448)	1390 (632)	2180 (991)	3070 (1395)	3735 (1698)	5040 (2291)	6645 (3070)	7315 (3325)	7560 (3436)	8045 (3657)	8200 (3727)	8615 (3916)	8915 (4052)
B43	3/4	7/16 (11)	1460 (664)	2055 (934)	3240 (1473)	4560 (2073)	5550 (2523)	7480 (3400)	9865 (4484)	10850 (4932)			12165 (5530)		13225 (6011)
B53, B63	1,1¼	1/2 (12)	1825 (830)	2575 (1170)	4050 (1841)	5700 (2591)	6925 (3148)	9350 (4750)		13565 (6166)			15230 (6923)		16540 (7518)
B73, B83	1½, 2	3/4 (19)	2760 (1255)	3890 (1768)	6120 (2782)	8610 (3914)		14125 (6420)		20520 (9327)			23015 (10461)		25055 (11389)
B73HC, B83HC	1½, 2	1-1/4 (32)	3555 (1616)	5030 (2286)	7950 (3614)	11240 (5109)			33000 (15000)		_			_	

Connections: 1/2"-2" NPT

- Unit Heaters
- Pipe Coils
- Blast Coils
- Steam Mains
- Dry Kilns
- Jacketed Kettles
- Hot Water Heaters
- Dryers (all types)
- Large Heat Exchangers

OPTIONS See page 9

- SLR SLR Orifice
- SW Socketweld
- HC High capacity orifice

Canadian Registration # 0E0591.9

CONQUEROR "C" SERIES THERMOSTATIC STEAM TRAPS

Pressures To 300 PSIG (21 barg) Temperatures to 500°F (260°C)

Freeze Proof — When installed with horizontal inlet and vertical outlet.

Renewable In-line — Renew trap in-line with factory packaged precision matched internal parts, replacement kits.

Compact — Requires minimum space while providing condensate capacities equal to larger mechanical traps.

Superior Performance — Maximum air handling capability. Immediate response to changing pressure and condensate loads. No adjustment necessary.

Sensitivity — Increased when installed on side with cover perpendicular to ground.

Temperature Sensitive Actuators — One moving part, stainless steel, fail open or closed, welded actuator provides maximum sensitivity, corrosion and thermal & hydraulic shock resistance.

Guaranteed — Guaranteed against defects in materials or workmanship for 3 years.

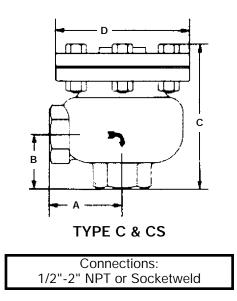
MODELS

- C33–1/2" angle pattern trap
- C43–3/4" angle pattern trap
- C53–1" angle pattern trap
- C63–1-1/4" angle pattern trap
- C73⁺-1-1/2" angle pattern trap
- C83⁺-2" angle pattern trap

CS models are the same as above in cast steel. *Add (-HC) to end of model number for high capacity.

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load.


CONQUEROR "C" SERIES THERMOSTATIC STEAM TRAPS SPECIFICATION

Steam trap shall be of balanced pressure design with stainless steel, welded actuator capable of discharging condensate within 10°F of saturated temperature. Where greater sensitivity is required or protection from flash steam locking, a SLR orifice shall be available to allow condensate and flash steam evacuation at or near saturated temperatures. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. Trap shall be cast iron or cast steel bodied suitable for pressures to 250 psig and available in 1/2" through 2" NPT.

MAXIMUM OPERATING CONDITIONS

Type C PMO: Max. Operating Pressure 250 psig (17.2 barg) TMO: Max. Operating Temperature 450°F (232°C) PMA: Max. Allowable Pressure 250 psig (17.2 barg) TMA: Max. Allowable Temperature 450°F (232°C) Type CS PMO: Max. Operating Pressure 300 psig (20.7 barg) TMO: Max. Operating Temperature 500°F (260°C) PMA: Max. Allowable Pressure 300 psig (20.7 barg) TMA: Max. Allowable Temperature 500°F (260°C) MATERIALS OF CONSTRUCTION Rody & Cover: Type C Cast Iron ASTM A278 Class 30

body & Cover. Type C Cast from ASTIVEA276 Class 30
Type CS Cast Steel ASTM A216 Grade
WCB
Actuator:Welded Stainless Steel
Cover Gasket:Graphite
Valve & Seat:Hardened 416 Stainless Steel

Dim	ension	S							
	Pipe		Inche	es (mm)		Weight Ib (kg			
Trap	Size inches	А	В	с	D	Type C	Type CS		
C33	1/2	2% (67)	1¹¾₀ (46)	4 ¹⁵ ‰ (125)	4½ (114)	8.3 (3.8)	8.6 (3.9)		
C43	3/4	2¾ (70)	2¼₀ (52)	5% (138)	5¼₀ (129)	11.1 (5.0)	13 (5.9)		
C53	1	3½ (89)	2¹¾₀ (71)	6¼₀ (154)	5 ¹³ /16 (148)	17.8 (8.1)	19.6 (8.9)		
C63	1¼	3½ (89)	2 ¹³ ‰ (71)	6¼₀ (154)	5 ¹³ /16 (148)	17.5 (8.0)	19.3 (8.8)		
C73	1½	5 (127)	3¾ (95)	8¾ (213)	7¾ (197)	39.1 (17.8)	39.2 (17.8)		
C83	2	5 (127)	3¾ (95)	8¾ (213)	7¾ (197)	39 (17.7)	31.1 (14.1)		

Maximum Cap	oacity—	lbs/hr	[.] 10°F	Belo	w Sa	turati	on (k	(g/hr	5°C E	Below	Satu	ratio	ר)			
Trap	Pipe Size	Orifice						Differe	ntial PS	IG (bar	g)					
Пар	Inch	Inches (mm)	1 (.07)	2 (.14)	5 (0.34)	10 (0.7)	20 (1.4)	50 (3.5)	100 (6.9)	125 (8.6)	150 (10.3)	175 (12.1)	200 (13.8)	225 (15.5)	250 (17.2)	300* (20.7)
C33, CS33	1/2	3/8 (10)	985 (448)	1390 (632)	2180 (991)	3070 (1395)	3735 (1698)	5040 (2291)	6645 (3070)	7315 (3325)	7560 (3436)	8045 (3657)	8200 (3727)	8615 (3916)	8915 (4052)	9220 (4191)
C43, CS43	3/4	7/16 (11)	1460 (664)	2055 (934)	3240 (1473)	4560 (2073)	5550 (2523)	7480 (3400)	9865 (4484)		11225 (5102)	11935 (5425)	12165 (5530)	12770 (5805)		13685 (6220)
C53, CS53 C63, CS63	1, 1¼	1/2 (12)	1825 (830)	2575 (1170)	4050 (1841)	5700 (2591)	6925 (3148)		12340 (5609)		14030 (6377)	14920 (6782)		15960 (7255)		
C73, CS73 C83, CS83	1½, 2	3/4 (19)	2760 (1255)	3890 (1768)	6120 (2782)	8610 (3914)	10470 (4759)					22580 (10264)				25915 (11780)
C73HC, C83HC	1½, 2	1-1/4 (32)	3555 (1616)	5030 (2286)	7950 (3614)			25140 (11427)	33000 (15000)		_	—	_	_	_	_

*CS Series Only.

C available with screwed connections only. CS available with screwed or socketweld connections.

MECHANICAL Steam Traps

NICHOLSON's Mechanical Trap line continues their tradition of offering high value with traditional designs while simultaneously pushing the performance envelope with leading edge technology. As America's only domestic manufacturer of free float technology, **NICHOLSON** continues to provide performance and value.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

NOVA NFT250 Series Variable Orifice Steam Traps

Pressures To 250 PSIG Temperatures to 450°F

Proven Caged Stainless Steel Balanced Pressure Thermostatic Air Vent

> automatically discharges air and non-condensables

> > **Stainless Steel Strainer**

with large screen area prevents dirt problems

Connections

Sizes ¹/2" – 2" screwed NPT (BSPT optional) Sizes 1¹/2" & 2" flanged ANSI 250

Weighted Stainless Steel Free Float Ball

multi-contact surface area modulates orifice discharge to provide smooth, continuous discharge and immediate response to load variations

Stainless Steel Sleeve

eliminates body erosion

Stainless Steel Seat

full bore prevents choking and permits ample capacities

Liquid Level

maintains seal over orifice to prevent live steam loss

Bottom & Side Blowdown Connections

for preventative maintenance

Guarantee

Traps are guaranteed against defects in materials or workmanship for 3 years.

Applications

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Rotating Drum

Converters

Coils

Applications

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit HeatersOil Preheaters
- Converters
- Coils
- COIIS
- Rotating Drum

DURA-FLO Inverted Bucket Steam Trap

Pressures To 250 PSIG Temperatures to 450°F

Withstands Severe Conditions

Heavy wall cast iron cover and body provide many years of trouble free service.

Smooth Action and Tight Shutoff

Stainless steel linkage, valve and seats are precision manufactured to insure optimal performance.

Ideal for "Dirty" Systems

Valve and seat located at top of trap and stainless steel strainers available on most horizontal models ensure long service.

Maximum Compatibility with Existing Installations

Pressure change assemblies are interchangeable with Armstrong which guarantees maximum flexibility when stocking repair parts.

Easy to Maintain

Working parts lift out with top for quick inspection and maintenance.

Resists Corrosion

Stainless steel bucket provides maximum service life with minimum deterioration.

Minimizes Effects of Water Hammer

Open bucket design avoids collapse typical of sealed floats.

Suitable for Wide Variety of Loads/Applications

Horizontal and vertical models in thirteen body sizes are one of the most comprehensive inverted bucket trap lines available.

NOVA NFT250 SERIES VARIABLE ORIFICE STEAM TRAPS

Pressures To 250 PSIG (17.2 barg) Temperatures to 450°F (232°C)

All Stainless Steel Internal Components — Hardened valves and seats. Extra long life and dependable service. Resists water hammer. Protects against erosion and corrosion.

Erosion Proof — Discharge passage is protected with a stainless steel liner.

Integral Strainer — Stainless Steel screen prevents dirt problems. Blow-down connection provided.

Thermostatic Air Vent — Full balanced pressure element for immediate and complete air venting.

Variable Orifice — Condensate is discharged continuously through the seat ring which is modulated by the float. This provides a smooth, even flow without high velocity or steam entrainment.

SLR Orifice — Optional continuous bleed prevents flash steam lockup when it is impossible to install trap at low point in system.

Guarantee — Traps are guaranteed against defects in materials or workmanship for 3 years.

MODELS

- NFT250-Low capacity
- NFT251–Medium capacity
- NFT252–High capacity
- NFT253–Super high capacity

Installation Tip: Always install STV Test & Block Valve as part of trap station SEE PAGE 118

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

During normal operation, an increase in the load causes the liquid level in the trap to rise. The float then rises and rolls off the seat ring, allowing more condensate to flow out. The float sinks as the condensate load decreases, moving nearer to the seat ring, decreasing the effective size of the orifice and allowing less condensate to discharge. This provides smooth, continuous operation that reacts instantly to load variation while maintaining a water seal over the seat ring to prevent live steam loss.

APPLICATIONS

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit Heaters
- Oil Preheaters
- Converters
- Coils
- Rotating Drum

OPTIONS See Page 9

- SLR SLR Orifice
- B Blowdown Valve (contact factory)
- Orifice Continuous Bleed Air Vent
- 250# 250# Flanged Connection* (Flat Faced) *Available on NFT 253 only.

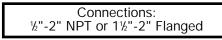
inninnin .

Canadian Registration # OE0591.9C

OPERATION

On startup, the thermostatic air vent (caged stainless welded bellows) is open, allowing air to flow freely through the vent valve orifice. When condensate flows into the trap, the float rises, allowing condensate to be discharged. Once air and non-condensibles have been evacuated, hot condensate will cause the thermostatic vent to close. Condensate will continue to be discharged as long as condensation occurs.

NOVA NFT250 SERIES VARIABLE ORIFICE STEAM TRAPS

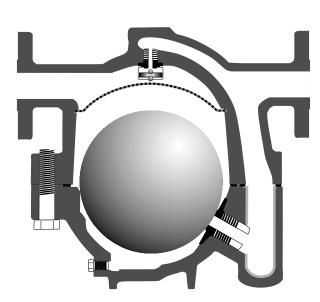

SPECIFICATION

Steam trap shall be of float and thermostatic design. Float shall be free of levers, linkages, or other mechanical connections. Float shall be weighted to maintain orientation and shall act as the valve being free to modulate condensate through the seat ring. Air vent shall be of balanced pressure design with stainless steel welded encapsulated bellows capable of discharging air and noncondensable gases continuously within 15°F of saturated temperature. Trap shall contain integral strainer and stainless steel exhaust port sleeve. Trap shall be cast iron bodied suitable for pressures to 250 psi and available in 1/2" through 2" NPT or flanged.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure

Clearance for Maintenance



MATERIALS OF CONSTRUCTION

Body and CoverCast Iron ASTM A126B All Internal PartsStainless Steel Air VentBalanced Pressure, Stainless Steel Cover GasketGraphite Fiber

1 10101 1010	in operating	g 1 10000010								
ORIFICE	F	PMO	Dimensio	ns						
20 50	20 psig 50 psig	(1.4 barg) (3.5 barg)	Model	Size	Connection -		Inche	es (mm)		Weight Lbs.
100	100 psig	(6.9 barg)	model		Connection	Α	В	С	D	(kg)
150 250	150 psig 250 psig	(10.3 barg) (17.2 barg)	NFT250	1/2 & 3/4	NPT	41/4	23/4	35/8	51/2	6
	x. Allowable	۲ S,				(108)	(69)	(92)	(140)	(2.7)
) psig (17.2 b		NFT251	³ /4 & 1	NPT	5 ¹ /2	2 ¹⁵ /16	4 ⁹ /16	6 ³ /4	13
TMA: Max	x. Allowable	Temperature:				(140)	(74)	(116)	(171)	(5.9)
	°F (232°C)		NFT252 [†]	1 & 1 ¹ /2	NPT	11	2 ¹⁵ /16	73/4	10	41
						(279)	(74)	(197)	(254)	(18.6)
					NPT	13 ³ /4	2 ¹⁵ /16	11 ⁵ /8	15 ³ /8	120
			NFT253	1 ¹ /2 & 2		(349)	(74)	(295)	(391)	(54.5)
			INF 1203	1'/2 & Z	250# Flg.	15 ³ /4	2 ¹⁵ /16	11 ⁵ /8	15 ³ /8	130
						(400)	(74)	(295)	(391)	(59.1)

Maxim	Orifice	,		•			erentia		G (barg))							
Trap	Size	Max.	1	5	10	15	20	30	50	75	100	125	150	175	200	225	250
		$\Delta \mathbf{P}$	(.07)	(.34)	(.69)	(1.03)	(1.38)	(2.07)	(3.45)	(5.17)	(6.90)	(8.62)	(10.3)	(12.1)	(13.8)	(15.5)	(17.2)
	0.193	20	264	810	1050	1100	1200										
	0.141	50	190	430	610	750	870	1070	1400								
NFT250	0.102	100	88	160	250	300	350	425	530	670	710						
	0.091	150	70	140	219	260	295	345	410	470	520	555	590				
	0.067	250	37	90	140	170	200	240	300	340	390	405	415	440	460	480	500
	0.277	20	590	1600	2100	2400	2450										
	0.209	50	340	760	1080	1330	1540	1900	2460								
NFT251	0.157	100	200	500	650	740	830	950	1100	1300	1400						
	0.141	150	170	385	527	627	705	825	990	1130	1240	1330	1415				
	0.120	250	110	255	360	425	500	575	700	800	900	940	1000	1050	1100	1150	1200
	0.593	20	2720	6280	8600	10500	11700										
	0.469	50	1750	3920	5560	6830	7900	9700	12600								
NFT252	0.339	100	930	2170	3130	3840	4460	4990	6020	7030	7960						
	0.316	150	850	1935	2650	3150	3540	4140	4970	5685	6230	6690	7100				
	0.261	250	670	1400	1900	2400	2540	3000	3500	4100	4200	4900	5100	5300	5500	5750	6000
	1.102	20	8000	15000	18000	19900	22800										
	0.875	50	5460	12600	15600	16900	18400	21000	25400								
NFT253	0.593	100	2800	6350	8700	10900	12800	13700	16600	18700	21000						
	0.578	150	2690	6120	8385	9970	11200	13100	15700	17980	19700	21150	22450				
	0.484	250	1600	3770	5300	6470	7560	8610	10400	12100	13600	14600	15500	16300	17100	17800	18400

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit Heaters
- Oil Preheaters
- Converters
- Coils
- Rotating Drum

OPTIONS See page 9

- SLR SLR Orifice
- B Blowdown Valve (contact factory)
- Continuous Bleed Air Vent
- 300# or 600# Flanged Connection* (Raised Face)

*Available on NFT652 and NFT653 only.

Canadian Registration # OE0591.9C

NOVA NFT650 SERIES VARIABLE ORIFICE STEAM TRAPS

Pressures To 650 PSIG (44.8 barg) Temperatures to 750°F (400°C)

All Stainless Steel Internal Components — Hardened valves and seats. Extra long life and dependable service. Resists water hammer. Protects against erosion and corrosion.

Erosion Proof — Discharge passage is protected with a stainless steel liner.

Integral Strainer — Stainless Steel screen prevents dirt problems. Blow-down connection provided.

Thermostatic Air Vent — Provided with balanced pressure element for immediate and complete air venting.

Variable Orifice — Condensate is discharged continuously through the seat ring which is modulated by the float. This provides a smooth, even flow without high velocity or steam entrainment.

SLR Orifice — Optional continuous bleed prevents flash steam lockup when it is impossible to install trap at low point in system.

Guarantee — Traps are guaranteed against defects in materials or workmanship for 3 years.

MODELS

- NFT651–Low capacity
- NFT652–Medium capacity
- NFT653–High capacity

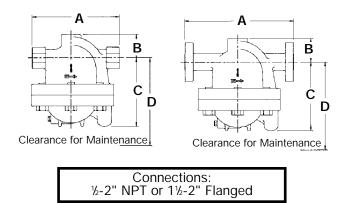
Installation Tip: Always install STV Test & Block Valve as part of trap station SEE PAGE 118

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

OPERATION

On startup, the thermostatic air vent (caged stainless welded bellows) is open, allowing air to flow freely through the vent valve orifice. When condensate flows into the trap, the float rises, allowing condensate to be discharged. Once air and non-condensibles have been evacuated, hot condensate will cause the thermostatic vent to close. Condensate will continue to be discharged as long as condensation occurs. During normal operation, an increase in the load causes the liquid level in the trap to rise. The float then rises and rolls off the seat ring, allowing more condensate to flow out. The float sinks as the condensate load decreases, moving nearer to the seat ring, decreasing the effective size of the orifice and allowing less condensate to discharge. This provides smooth, continuous operation that reacts instantly to load variation while maintaining a water seal over the seat ring to prevent live steam loss.



NOVA NFT650 SERIES VARIABLE ORIFICE STEAM TRAPS

SPECIFICATION

Steam trap shall be of float and thermostatic design. Float shall be free of levers, linkages, or other mechanical connections. Float shall be weighted to maintain orientation and shall act as the valve being free to modulate condensate through the seat ring. Air vent shall be of balanced pressure design with stainless steel welded encapsulated bellows capable of discharging air and noncondensable gases continuously within 15°F of saturated temperature. Trap shall contain integral strainer and stainless steel exhaust port sleeve. Trap shall be cast steel bodied suitable for pressures to 650 psi and available in 1/2" through 2" NPT, Socket Weld, or flanged.

MAXIMUM OPERATING CONDITIONS

MATERIALS OF CONSTRUCTION

Body & CoverASTM A216 Grade WCB
Cover Gasket Spiral Wound 304 Stainless
w/graphite filler
All InternalStainless Steel
Air Vent Balanced Pressure, Stainless Steel

	ax. Operatin	0				Air Vent		anoou		eranne	ss Steel
ORIFICE		PMO	.								
20	20 psig	(1.4 barg)	Dimensio	ons							
50	50 psig	(3.5 barg)					Weight				
100	100 psig	(6.9 barg)	Model	Size		A		В	С	D	Lbs.
175	175 psig	(12.1 barg)			NPT	300#	600#				(kg)
300	300 psig	(20.7 barg)	NFT651	¹ /2, ³ /4 & 1	5 ¹ /2	_	_	3 ¹ /16	5 ⁷ /16	7 ¹ /4	21
400	400 psig	(27.6 barg)			(140)			(78)	(138)	(184)	(9.5)
	600 600 psig (41.4 barg) PMA: Max. Allowable Pressure:			1	11	13 ³ /4	13 ³ /4	2 ¹⁵ /16	83/4	11 ³ /8	84
	x. Allowable) psig (44.8				(279)	(349)	(349)	(75)	(222)	(290)	(38.2)
	1 0 1	e Temperature:	NFT652	1 ¹ /2 & 2	11	13 ³ /4	14 ⁹ /16	2 ¹⁵ /16	83/4	11 ³ /8	87
	0°F (400°C)	, ioniporataion			(279)	(349)	(370)	(75)	(222)	(290)	(39.5)
				1 ¹ /2	13 ³ /4	16 ³ /4	17 ³ /8	3 ⁵ /16	11 ⁷ /8	16	192
			NFT653		(349)	(426)	(411)	(84)	(392)	(406)	(87.3)
				2	13 ³ /4	16 ¹¹ /16	17 ⁷ /16	3 ⁵ /16	11 ⁷ /8	16	195
					(349)	(424)	(443)	(84)	(302)	(406)	(88.6)

Orifice Size	MAX		Maximum Capacity - Ibs/hr (10 degrees Below Saturation) Trap Orifice MAX Differential - PSIG (barg)													
Size							Diff	erential	- PSIG	(barg)						
	$\Delta \mathbf{P}$	1	5	10	20	50	75	100	150	175	200	250	300	400	500	600
		(.07)	(.34)	(.69)	(1.38)	(3.45)	(5.17)	(6.90)	(10.3)	(12.1)	(13.8)	(17.2)	(20.7)	(27.6)	(34.5)	(41.4)
	20	590	1600	2100	2450											
						300	340	375	435	465	490	540	585	665	740	800
											FF0 0	(000				
													50/0			
														4/00		
															2/55	2055
						1470	1680	1840	2140	2290	2410	2655	2890	3300	3655	3955
						25 400										
							10700	21000								
									22450							
										21000						
											17100	18400				
													18315			
														16555		
															12960	13990
	0.277 0.209 0.157 0.141 0.130 0.120 0.106 0.096 0.339 0.469 0.339 0.316 0.297 0.261 0.238 0.213 0.213 0.213 0.213 0.213 0.238 0.213 0.213 0.257 0.547 0.578 0.577 0.547 0.547 0.484 0.453 0.4039	0.209 50 0.157 100 0.141 150 0.120 250 0.120 250 0.120 250 0.120 250 0.120 250 0.120 250 0.166 300 0.096 400 0.081 600 0.339 100 0.316 150 0.297 175 0.261 250 0.238 300 0.180 600 1.102 20 0.875 50 0.593 100 0.578 150 0.547 175 0.484 250 0.453 300 0.453 300	$\begin{array}{ccccc} 0.209 & 50 & 340 \\ 0.157 & 100 & 200 \\ 0.141 & 150 & 170 \\ 0.130 & 175 & 180 \\ 0.120 & 250 & 110 \\ 0.166 & 300 & 105 \\ 0.096 & 400 & 100 \\ 0.081 & 600 & 75 \\ 0.593 & 20 & 2720 \\ 0.469 & 50 & 1750 \\ 0.339 & 100 & 930 \\ 0.316 & 150 & 850 \\ 0.297 & 175 & 800 \\ 0.261 & 250 & 670 \\ 0.238 & 300 & 645 \\ 0.213 & 400 & 515 \\ 0.180 & 600 & 370 \\ 1.102 & 20 & 8000 \\ 0.547 & 175 & 2400 \\ 0.547 & 175 & 2400 \\ 0.543 & 300 & 1500 \\ 0.404 & 400 & 1400 \\ 0.339 & 600 & 800 \\ \end{array}$	$\begin{array}{ccccccccc} 0.209 & 50 & 340 & 760 \\ 0.157 & 100 & 200 & 500 \\ 0.141 & 150 & 170 & 385 \\ 0.130 & 175 & 180 & 350 \\ 0.120 & 250 & 110 & 255 \\ 0.106 & 300 & 105 & 240 \\ 0.096 & 400 & 100 & 220 \\ 0.081 & 600 & 75 & 145 \\ 0.593 & 20 & 2720 & 6280 \\ 0.469 & 50 & 1750 & 3920 \\ 0.339 & 100 & 930 & 2170 \\ 0.316 & 150 & 850 & 1935 \\ 0.297 & 175 & 800 & 1700 \\ 0.261 & 250 & 670 & 1400 \\ 0.213 & 400 & 515 & 995 \\ 0.180 & 600 & 370 & 710 \\ 1.102 & 20 & 8000 & 15000 \\ 0.875 & 50 & 5460 & 12600 \\ 0.547 & 175 & 2400 & 5500 \\ 0.578 & 150 & 2690 & 6120 \\ 0.547 & 175 & 2400 & 5500 \\ 0.548 & 250 & 1600 & 3770 \\ 0.453 & 300 & 1500 & 3500 \\ 0.404 & 400 & 1400 & 2800 \\ 0.339 & 600 & 800 & 1800 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.209 50 340 760 1080 1540 2460 Image: Constraint of the constraint	0.209 50 340 760 1080 1540 2460	0.209 50 340 760 1080 1540 2460 Image: Constraint of the	0.209 50 340 760 1080 1540 2460 -	0.209 50 340 760 1080 1540 2460 -	0.209 50 340 760 1080 1540 2460 -

For Kg/Hr Multiply by .454

APPLICATIONS

- Unit Heaters & other Space Heating Equipment
- Heat Exchangers/Reboilers
- Steam Heating Coils
- Steam Main Drips
- Air Compressor Receivers
- Air Line Drips
- Air Powered Process Equipment

OPTIONS See page 9

Repair Kits

FTN SERIES FLOAT & THERMOSTATIC STEAM TRAPS

Pressures To 125 PSIG (8.6 barg) Temperatures to 450°F (232°C)

Universal Four-port Design — Four possible hookup combinations of the "H" pattern body and piping dimensions similar to other major manufacturers allow maximum installation flexibility for easy replacement of other traps. Inlet and outlet taps on larger sized traps located in the cover to permit larger capacities.

All Stainless Steel Internal Components — Hardened valves and seats. Extra long life and dependable service. Resists water hammer. Protects against erosion and corrosion.

Balanced Pressure Thermostatic Element — allows venting of non-condensibles while operating at design pressure.

Rugged Welded Stainless Steel Element — Increases service life.

Wide Selection of Differential Pressures — Sizes 3/4" to 2" available with 15, 30, 75 and 125 psig differential pressures.

Air Line Water Removal — Special configuration FTNA optimized for compressed air service.

Repairable In-line — Can be serviced without disturbing system piping.

MODELS

- FTN-15-Steam pressures to 15 PSIG
- FTN-30–Steam pressures to 30 PSIG
- FTN-75-Steam pressures to 75 PSIG
- FTN-125-Steam pressures to 125 PSIG
- FTNA-75-Air pressures to 75 PSIG
- FTNA-125-Air pressures to 125 PSIG

Installation Tip: Always install STV Test & Block Valve as part of trap station SEE PAGE 118

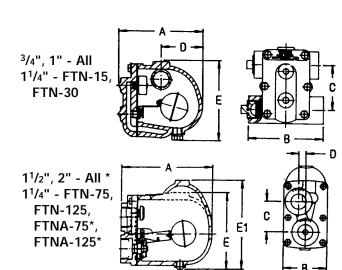
Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

OPERATION

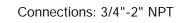
Air entering trap is immediately discharged through the high capacity integral air vent. The thermostatic vent will close just prior to saturation temperature. The balanced design will allow venting of non-condensibles that collect in the float chamber when operating at design pressure. When steam enters the trap, the thermostatic air vent closes to prevent steam loss. When steam gives up it's latent heat, it becomes condensate. This "condensate" enters the trap and causes the stainless steel ball float to rise. Raising of the float opens the discharge valve, allowing condensate to be continuously discharged as it enters the trap. The condensate level in the trap body is maintained above the discharge seat, providing a positive seal against the loss of steam.

FTN SERIES FLOAT & THERMOSTATIC STEAM TRAPS

SPECIFICATION


Steam trap shall be of float and thermostatic design. Float shall actuate the valve via a hinged lever and linkage. Air vent shall be of balanced pressure design with stainless steel welded encapsulated bellows capable of discharging air and noncondensable gases continuously within 15°F of saturated temperature. Traps through 1-1/4" shall employ "H" pattern connections to accommodate multiple piping configurations. Trap shall be cast iron bodied suitable for pressures to 125 psi and available in 3/4" through 2" NPT.

MAXIMUM OPERATING CONDITIONS


PMO

PMO: Max. Operating Pressure

ORIFICE

*1/8" NPT tap at top boss for balancing line.

15 15 psig (1.03 barg)									1
30 30 psig (2.07 barg)	Dimensions								
75 75 psig (5.17 barg)	Dimonolonio			In	nches (m	m)			Weight
125 125 psig (8.62 barg)	Model No.	Size	Α	В	C	Ď	E	E1	Weight Ibs (kg)
PMA: Max. Allowable Pressure		3/4	6.25	5.50	3.31	3.00	5.75	_	9
250 psig (17.2 barg)			(159)	(140)	(84)	(76)	(146)		(4.1)
TMA: Max. Allowable Temperature		1	6.25 (159)	5.50 (140)	3.31 (84)	3.00 (76)	5.75 (146)	—	9 (4.1)
450°F (232°C)	FTN-15, FTN-30	1 ¹ /4	6.25 (159)	5.75 (146)	3.00 (76)	3.81 (97)	5.75 (146)	—	9 ¹ / ₂ (4.3)
MATERIALS OF CONSTRUCTION	_	1 ¹ /2	8.50 (216)	4.25 (108)	3.00 (76)	0.70 (18)	—	8.40 (213)	18 (8.2)
Body & CoverCast Iron ASTMA126B		2	9.81 (249)	4.94 (123)	4.94 (123)	0.12 (3)	9.12 (232)	_	26 (11.8)
All InternalStainless Steel		3/4	6.25 (159)	5.50 (140)	3.31 (84)	3.00 (76)	5.75 (146)		9 (4.1)
Air Vent (FTN only)Balanced Pressure, Welded Stainless Steel		1	6.25 (159)	5.50 (140)	3.31 (84)	3.00 (76)	5.75 (146)	—	9 (4.1)
	FTN-75, FTN-125 FTNA-75, FTNA-125	1 ¹ /4	8.50 (216)	4.25 (108)	3.00 (76)	0.70 (18)	—	8.40 (213)	18 (8.2)
		1 ¹ /2	8.50 (216)	4.25 (108)	3.00 (76)	0.70 (18)	—	8.40 (213)	18 (8.2)
		2	9.81 (249)	4.94 (123)	4.94 (123)	0.12 (3)	9.12 (232)		26 (11.8)

Maxim	Maximum Capacity—Ibs/hr (10°F Below Saturation)																
	Size			Differential-PSIG (barg)													
Тгар	NPT	Orifice (in.)	1/4 (.017)	1/2 (.034)	1 (.069)	2 (.138)	5 (.345)	10 (.690)	15 (1.03)	20 (1.38)	25 (1.72)	30 (2.07)	40 (2.76)	50 (3.45)	75 (5.17)	100 (6.90)	125 (8.62)
FTN-15	3/4"	.218	279	369	489	650	785	1000	1075								
FTN-15	1"	.218	279	369	489	650	785	1000	1075								
FTN-15	1 1/4"	.312	600	770	980	1240	1640	2000	2340								
FTN-15	1 1/2"	.500	1100	1700	2400	3300	5000	6600	7600								
FTN-15	2"	.625	2300	2800	3600	4650	6900	9000	10900								
FTN-30	3/4"	.218	279	369	489	650	785	1000	1075	1210	1300	1370					
FTN-30	1"	.218	279	369	489	650	785	1000	1075	1210	1300	1370					
FTN-30	1 1/4"	.228	375	500	690	910	1200	1500	1680	1800	1900	2000					
FTN-30	1 1/2"	.390	1000	1300	1700	2300	3400	4600	5500	6000	6600	7000					
FTN-30	2"	.500	1300	1800	2500	3400	5200	6800	7800	8600	9300	10000					
FTN-75 [†]	3/4"	.166	160	213	280	365	520	700	795	875	930	970	1120	1230	1450		
FTN-75 [↑]	1"	.166	160	213	280	365	520	700	795	875	930	970	1120	1230	1450		
FTN-75 [†]	1 1/4"	.312	550	725	960	1300	1900	2650	3050	3400	3700	4000	4400	4750	5400		
FTN-75 [†]	1 1/2"	.312	550	725	960	1300	1900	2650	3050	3400	3700	4000	4400	4750	5400		
FTN-75 [↑]	2″	.421	850	1100	1500	2000	3100	4150	4750	5200	5500	5800	6400	6800	7700		
FTN-125 [†]	3/4"	.125	100	135	175	230	330	415	500	585	620	685	750	830	970	1110	1190
FTN-125 [†]	1"	.125	100	135	175	230	330	415	500	585	620	685	750	830	970	1110	1190
FTN-125 [↑]	1 1/4"	.246	400	520	680	890	1300	1700	2050	2300	2500	2700	3000	3200	3800	4200	4500
FTN-125 [↑]	1 1/2"	.246	400	520	680	890	1300	1700	2050	2300	2500	2700	3000	3200	3800	4200	4500
FTN-125 [†]	2"	.332	550	675	880	1225	1950	2600	3000	3250	3500	3800	4200	4600	5500	6100	6600

For Kg/Hr Multiply by .454 †For FTNA capacities, multiply by 1.33.

APPLICATIONS

- Very High Condensate Loads
- Continuous Drainage With High Air Venting Capacity Requirements
- Industrial And Commercial Applications
- Absorption Systems
- Air Handling Coils
- Heat Exchangers
- Dryers Evaporators
- Hot water Generators
- Rendering Machines
- Steam Process Equipment
- Air Make-up Coils
- Unit Heaters And Cooking Kettles

MAX-FLO SUPER HIGH CAPACITY FLOAT & THERMOSTATIC STEAM TRAPS

Pressures to 175 PSIG (12.1 barg) Temperatures to 377°F (192°C)

- High Capacities
- Rugged cast iron body and cover
- Stainless steel thermostatic element eliminates air binding
- Stainless steel float and lever mechanism
- Below condensate level seat design prevents steam leakage
- Resistant to water hammer and corrosion
- In-Line repairable

MODELS

- HC-15 Steam pressures to 15 PSIG
- HC-30 Steam pressures to 30 PSIG
- HC-75 Steam pressures to 75 PSIG
- HC-125 Steam pressures to 125 PSIG
- HC-175 Steam pressures to 175 PSIG

Installation Tip: Always install STV Test & Block Valve as part of trap station SEE PAGE 118

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

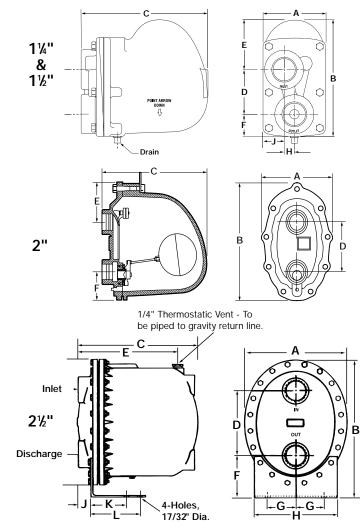
19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

OPERATION

During startup, air and non-condensible gases enter the trap and are automatically vented through an accurate balanced pressure internal thermostatic air vent. As condensate enters the trap, the float and lever mechanism is raised, lifting the valve off the seat, discharging the condensate. Condensate will continue to be discharged at the same rate at which it is entering. Any air or non-condensible gas that may accumulate will be continually and efficiently passed by the thermostatic air vent.

MAX-FLO SUPER HIGH CAPACITY FLOAT & THERMOSTATIC STEAM TRAPS

SPECIFICATION


Steam trap shall be of float and thermostatic design. Float shall actuate the valve via a hinged lever and linkage. Air vent shall be of balanced pressure design with stainless steel welded encapsulated bellows capable of discharging air and noncondensable gases continuously. Trap shall be cast iron bodied suitable for pressures to 175 PSI and shall be a _____ NPT connection.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	see orifice selection
TMO: Max. Operating Temperature	saturated at pressure
PMA: Max. Allowable Pressure	175 PSIG (12.1 barg)
PMA: Max. Allowable Pressure	377°F (192°C)

MATERIALS OF CONSTRUCTION

Body & CoverCast Iron 30,000 psi tensile Valve Pin and SeatStainless Steel (Hardened)
FloatStainless Steel
Lever AssemblyStainless Steel
Thermostatic Air VentStainless Steel Cage
& Thermal Element
Cover BoltsGrade 5 BaffleStainless Steel (2-1/2 (65mm) units only)

Dimensi	ions												
MODEL	NPT Size in. (mm)	A	В	С	D	E	F	G	н	J	к	L	Weight Ibs (kg)
HC-175	1¼ & 1½ (32 & 40)	4½ (108)	85⁄1₀ (211)	8%6 (217)	3 (76)	3 % (86)	2 (51)		⁴⁵ ⁄⁄ ₆₄ (17.8)	1 % (35)	_	_	18 (8)
ALL	2 (50)	10 (254)	15 (381)	15½ (394)	6 % (168)	4¾ (121)	3½ (89)		—	_	_	_	108 (49)
ALL	2½ (65)	14½ (368)	20 ¼ (514)	17¾ (441)	9 ½ (241)	14 ¹⁵ /16 (379)	6 ¼ (159)	5 (127)	12 (305)	1% (41)	4½ (114)	7 (178)	175 (79)

Maxim	um Ca	pacity	/-lbs/h	r															
								Diffe	rential	- PSIG	(barg)								
Trap	Orifice	1/4	1/2	1	2	5	10	15	20	25	30	40	50	60	75	100	125	150	175
	Max ∆P	(0.017)	(0.035)	(0.07)	(0.14)	(0.35)	(0.69)	(1.0)	(1.4)	(1.69)	(2.1)	(2.8)	(3.5)	(4.2)	(5.2)	(6.9)	(8.6)	(10.4)	(12.1)
HC-15, 2"	.970	6500	8000	9500	10800	15500	20900	24000											
HC-15, 2½"	1.875	17000	20000	27000	36000	46000	55000	60000											
HC-30, 2"	.876	3400	4600	6400	8400	12500	16900	19000	21500	23590	24000								
HC-30, 2½"	1.624	14000	17000	20900	25500	33200	40500	45500	49400	52700	55600								
HC-75, 2"	.858	2550	3150	4300	5450	7600	10400	11400	12500	13500	14250	15600	17150	18600	20500				
HC-75, 2½"	1.031	5900	7700	10000	13000	18600	24200	28300	31600	34400	36800	41100	44800	48040	52300				
HC-125, 2"	.448	2300	2800	3450	4200	5450	6600	7450	8050	8600	8950	10350	11950	13400	15600	18850	21800		
HC-125, 2½"	.797	4000	5300	6900	9100	13000	17100	20000	22400	24500	26300	29400	32100	34650	37600	42100	46000		
HC-175, 1¼"	.210	260	350	480	640	940	1190	1450	1560	1670	1750	1910	2040	2100	2300	2500	2900	3140	3240
HC-175, 1½"	.210	260	350	480	640	940	119	1450	1560	1670	1750	1910	2040	2100	2300	2500	2900	3140	3240
HC-175, 2"	.375	2100	2600	3000	3500	4400	4900	5350	5800	6250	6700	7600	8600	9550	11000	13000	14750	16500	18000
HC-175, 2½"	.688	2460	3350	4600	6200	9400	12800	15400	17500	19300	21000	23800	26300	28060	31600	35900	39700	43100	46200

FTE 10

FTE 44

FTE 43

FTE 44F

APPLICATIONS

- Very High Condensate Loads
- Continuous Drainage With High Air Venting Capacity Requirements
- Industrial And Commercial Applications
- Absorption Systems
- Air Handling Coils
- Heat Exchangers
- Dryers Evaporators
- Hot water Generators
- Rendering Machines
- Steam Process Equipment
- Air Make-up Coils
- Unit Heaters And Cooking Kettles

OPTIONS

- BSPT Threaded connection
- S-SLR Orifice on FTE-10
- Socket Weld connection on FTE-44
- Flanged connections
- ANSI 125/150, 300, 600
- DIN 10, 16, 25 or 40
- BS10 F, H, J, K or R

OPERATION

During startup, air and non-condensible gases enter the trap and are automatically vented through an accurate balanced pressure internal thermostatic air vent. As condensate enters the trap, the float and lever mechanism is raised,

FTE SERIES FLOAT & THERMOSTATIC STEAM TRAPS

Pressures to 464 PSIG (32 barg) Temperatures to 850°F (454°C)

- High Capacities
- Rugged cast iron, ductile iron or cast steel body and cover
- Stainless steel thermostatic element eliminates air binding
- Stainless steel float and lever mechanism
- Below condensate level seat design prevents steam leakage
- Resistant to water hammer and corrosion
- In-Line repairable

MODELS

CAST IRON BODY

- FTE-10 To 200 PSIG Threaded Connections
- FTE-43 To 200 PSIG Flanged Connections

DUCTILE IRON BODY

FTE-14 – To 200 PSIG Threaded Connections

CAST STEEL BODY

- FTE-44 To 465 PSIG Threaded/Socket Weld Connections
- FTE-44F To 465 PSIG Flanged Connections

Installation Tip: Always install STV Test & Block Valve as part of trap station SEE PAGE 118

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance on NPT Traps SEE PAGE 102

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

lifting the valve off the seat, discharging the condensate. Condensate will continue to be discharged at the same rate at which it is entering. Any air or non-condensible gas that may accumulate will be continually and efficiently passed by the thermostatic air vent.

NICHOLSON

FTE SERIES FLOAT & THERMOSTATIC STEAM TRAPS

SPECIFICATION

Steam trap shall be of float and thermostatic design. Float shall actuate the valve via a hinged lever and linkage. Air vent shall be of balanced pressure design with stainless steel welded encapsulated bellows capable of discharging air and noncondensable gases continuously. Trap shall be _____ bodied suitable for pressures to _____ PSI and shall be a _____ connection.

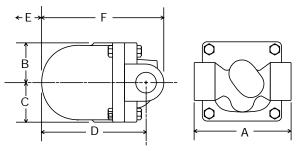
MAXIMUM OPERATING CONDITIONS

CAST IRON/DUCTILE IRON

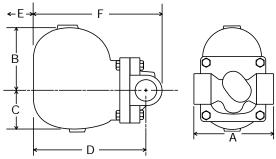
PMO: Max. Operating Pressure TMO: Max. Operating Temperature	see orifice selection saturated at pressure
PMA: Max. Allowable Pressure PMA: Max. Allowable Pressure	232 psig (16 barg) 450°F (232°C)
CAST STEEL	
PMO: Max. Operating Pressure	see orifice selection
TMO: Max. Operating Temperature	saturated at pressure
PMA: Max. Allowable Pressure TMA: Max. Allowable Pressure	465 psig (32 barg) 850°F (454°C)

MATERIALS OF CONSTRUCTION

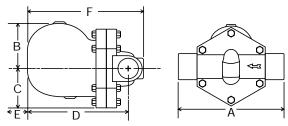
Body & CoverCast Iron (ASTM A48 CI. 30)
Ductile Iron (DIN 1693 GGG 40)
Cast Steel (ASTM A216 Gr. WCB)
/alveStainless Steel 304 (up to 1")
Stainless Steel 410 (1½", 2")
/alve SeatStainless Steel 410
Housing & Housing Cover for Float Mechanism
ASTM A743 Gr. CA 40 (Investment Cast)
FloatStainless Steel 304
_ever AssemblyStainless Steel 304
Thermostatic Airvent Stainless Steel 304
Cover BoltsSAE Gr. 8


Connections: 1/2" – 2" NPT, Flanged or Socket Weld

Maximum Capacity—Ibs/hr (10°F Below Saturation)

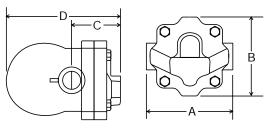

			-	-			<u> </u>			•		1011			- /				
			Max	$\Delta \mathbf{P}$						Differ	ential F	Pressur	e-PSIG	(barg)					
Trap	Size inlet	Orifice (in.)	BAR	PSI	5 (.345)	10 (.690)	20 (1.38)	40 (2.76)	50 (3.45)	65 (4.50)	80 (5.52)	100 (6.90)	125 (9.62)	145 (10.0)	180	200 (13.8)	300 20.7	400 27.6	465 32.1
	1/2	0.142	4.5	65	400	520	700	950	1000	1150	(5.52)	(0.90)	(0.02)	(10.0)	(12.4)	(13.0)	20.7	21.0	32.1
FTE-10, 14, & 43	&	0.095	10.0	145	275	380	530	720	800	900	1000	1080	1250	1380					
	3/4	0.079	14.0	200	200	290	400	570	640	700	800	900	1020	1100	1240	1300			
	0/1	0.256	4.5	65	1650	2200	3050	4200	5000	5200		/00							
FTE-10, 14, & 43	1	0.17	10.0	145	870	1250	1650	2350	2600	3000	3200	3500	3900	4100					
		0.142	14.0	200	640	800	1250	1600	1800	2000	2200	2550	2780	2900	3020	3100			
		0.689	4.5	65	4200	6000	8800	12500	13500	15000									
FTE-10 & 43	1½	0.571	10.0	145	2800	3900	5600	8000	9000	10000	11500	13000	14200	15000					
		0.531	14.0	200	1800	2600	3600	5000	5450	6000	6900	7800	8600	9000	9650	10000			
		1.063	4.5	65	13500	19800		40000		50500									
FTE-10 & 43	2	0.811	10.0	145	7300	10000		20000				32000							
		0.657	14.0	200	3500	5000	6800	9600	10500	12000	13500	15000	16500	17500	19000	20000			
		0.142	4.5	65	400	520	700	950	1000	1150									
	1/2	0.095	10.0	145	275	380	530	720	800	900	1000	1080	1250	1380					
FTE-44 & 44F	&	0.079	14.0	200	200	290	400	570	640	700	800	900	1020	1100	1240	1300			
	3/4	0.07	21.0	300	110	145	200	280	315	350	400	430	480	520	580	610	700		
		0.063	32.0	465	65	90	120	155	170	200	215	250	280	300	325	345	400	425	440
		0.256	4.5	65	1650	2200	3050	4200	5000	5200									
		0.17	10.0	145	870	1250	1650	2350	2600	3000	3200	3500	3900	4100					
FTE-44 & 44F	1	0.142	14.0	200	640	800	1250	1600	1800	2000	2200	2550	2780	2900	3020	3100			
		0.114	21.0	300	400	520	700	950	1000	1150	1600	1850	2020	2150	2350	2500	2800		
		0.095	32.0	465	275	380	530	720	800	900	1000	1080	1250	1380	1440	1500	1800	2000	2050
		0.689	4.5	65	4200	6000	8800	12500	13500	15000									
		0.571	10.0	145	2800	3900	5600	8000	9000	10000				15000					
FTE-44 & 44F	1½	0.531	14.0	200	1800	2600	3600	5000	5450	6000	6900	7800	8600	9000	9650	10000	10000		
		0.531 0.531	21.0	300	1800 1800	2600 2600	3600 3600	5000 5000	5450 5450	6000 6000	6900	7800	8600	9000	9650 9650	10000		14200	15000
		1.063	32.0 4.5	465 65	13500	19800				50500	6900	7800	8600	9000	9050	10000	13000	14300	15000
		0.811	4.5	ор 145	7300	19800		20000			20000	32000	25000	10000					
-TE-44 & 44F	2	0.657	14.0	145 200	3500	5000	6800	9600				15000			10000	20000			
I I L-44 Q 441	[∠]	0.657	21.0	300	3500	5000	6800	9600				15000					27000		
		0.657	32.0	300 465	3500	5000	6800					15000						29800	31000
			JZ.U	+00	3300	1 3000	0000	,000	10000	12000	13300	13000	10300	17300	1 7000	20000	2/000	27000	51000

For Kg/Hr Multiply by .454


SERIES FTE DIMENSIONS

FTE-10 CAST IRON & FTE-44 CAST STEEL 1/2" & 3/4"

FTE-10 CAST IRON & FTE-44 CAST STEEL 1"

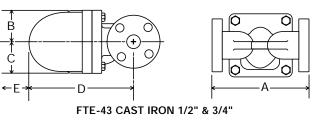

FTE-10 CAST IRON & FTE-44 CAST STEEL 11/2" & 2"

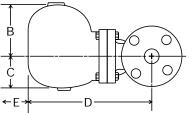
DIMENSIONS inches (mm) AND WEIGHTS pounds (kg) SERIES FTE-10 & FTE 44

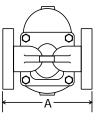
Size			Inche	s (mm)			Weight	Lbs(kg)
Size	Α	В	С	D	Е	F	FTE-10	FTE-44
1/2	5¼₀	2½	2¼	5 ¹¹ /16	4 ⁵⁄₁₀	6 ¹¹ /16	10.5	11.4
	(128)	(54)	(54)	(145)	(110)	(170)	(4.8)	(5.2)
3/4	5¼₀	2¼	2½	5 ¹¹ %6	4%	6 ¹¹ /1 ₆	10.5	11
	(128)	(54)	(54)	(145)	(110)	(170)	(4.8)	(5.0)
1	5¼₀	4⁵‰	2 ¹⁵ /16	7½	6 %₀	8½	18.7	17.6
	(128)	(110)	(75)	(190)	(160)	(216)	(8.5)	(8.0)
1½	11½	5	4⁵‰	10	7 ⁷ ∕₃	11¾	49.5	48.4
	(282)	(127)	(110)	(254)	(200)	(289)	(22.5)	(22.0)
2	12½ (308)	5½ (140)	5 (127)	10¼ (260)	7% (200)	11 ¹³ % (300)	61.6 (28.0)	59.4 (27.0)

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg) SERIES FTE-14

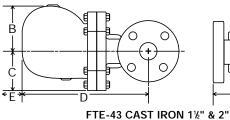
Size		Weight			
5120	Α	В	С	D	lbs. (kg)
1/2	4¾	4¼	2%	5 ¹³ /16	7.9
1/2	(121)	(108)	(67)	(148)	(3.6)
3/4	4¾	4¼	2%	5 ¹³ /16	7.9
3/4	(121)	(108)	(67)	(148)	(3.6)
1	5 ¹ %	4¼	3	6%	10.1
1	(145)	(108)	(76)	(167)	(4.6)

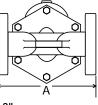


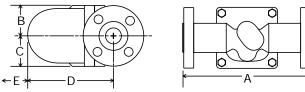

FTE-14-DUCTILE IRON 1/2", 3/4" & 1"

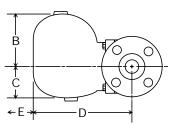

SERIES FTE DIMENSIONS

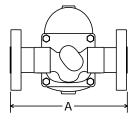
DIMENSIONS inches (mm)
AND WEIGHTS pounds (kg)
SERIES FTE-43


Size		In	ches (m	m)		Weight	
Size	A	В	С	D	E	Lbs. (kg)	
1/2	5%	2 ½	2 ½	7½	45%₀	15.4	
	(150)	(54)	(54)	(190)	(110)	(7.0)	
3/4	5%	2½	2½	7 %₀	4%₀	16.5	
	(150)	(54)	(54)	(192)	(110)	(7.5)	
1	6 %₀	4%₀	2¹5⁄1₀	9 ¹ %	6 %₀	25.3	
	(160)	(110)	(75)	(245)	(160)	(11.5)	
1½	9 ¼ ₆ (230)	5 (127)	4%₀ (110)	13½ (333)	7% (200)	61.6 (28.0)	
2	9 ¼ ₆	5½	5	13½	7%	74.8	
	(230)	(140)	(127)	(343)	(200)	(34.0)	

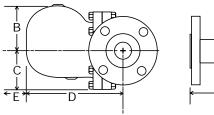



FTE-43 CAST IRON 1"




DIMENSIONS inches (mm) AND WEIGHTS pounds (kg) SERIES FTE-44F

Size		In	ches (m	m)		Weight	
Size	Α	В	С	D	E	Lbs. (kg)	
1/2	8¼	2 ½	2½	5%₀	4%	16.5	
	(210)	(54)	(54)	(141)	(110)	(7.5)	
3/4	8¼	2½	2½	5%6	45%6	17.6	
	(210)	(54)	(54)	(141)	(110)	(8.0)	
1	8¼	4%₁₀	2¹5⁄1₀	7½	6 %₀	25.3	
	(210)	(110)	(75)	(190)	(160)	(11.5)	
1½	12 ¹¾₀	5	4%	9 %	7%	60.5	
	(325)	(127)	(110)	(245)	(200)	(27.5)	
2	12 ¹¾₀	5½	5	9 %	7%	74.8	
	(325)	(140)	(127)	(251)	(200)	(34.0)	



FTE-44F CAST STEEL 1/2" & 3/4"

FTE-44F CAST STEEL 1"

FTE-44F CAST STEEL 11/2" & 2"

APPLICATIONS

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit Heaters
- Oil Preheaters
- Converters
- Coils
- Rotating Drum

OPTIONS See page 9

Repair Kits

Canadian Registration # OE 0591.1C

Installation Tip: Always install STV Test & Block Valve as part of trap station SEE PAGE 118

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

DURA-FLO INVERTED BUCKET STEAM TRAPS

Pressures To 250 PSIG (17.2 barg) Temperatures to 450°F (232°C)

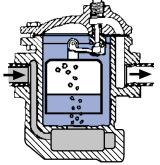
Hardened Stainless Steel Valve and Seat — Long life and maximum corrosion resistance.

Stainless Steel Bucket — Long lasting, rugged and naturally resistant to water hammer.

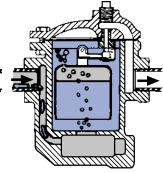
Inexpensive — Low maintenance and initial cost.

Repairable in-line — All working parts lift out of top of trap.

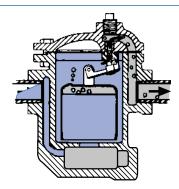
Cast Iron Body — Durable heavy wall construction provides years of reliable service.

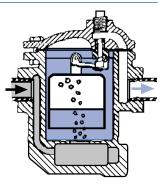

Suitable for Wide Variety of Loads/Applications — Horizontal and vertical models in thirteen body sizes.

Resists Dirt and Scale — Valve and seats positioned at top of traps and internal stainless strainer available on most horizontal models ensure long service.


MODELS

- 80S-Low capacity horizontal w/integral strainer
- 81S–Medium low capacity horizontal w/integral strainer
- 82S–Medium capacity horizontal w/integral strainer
- 83S–Medium high capacity horizontal w/integral strainer
- 84–High capacity horizontal
- 85–Super high capacity horizontal
- 86–Ultra high capacity horizontal
- 21–Medium low capacity vertical
- 22–Medium capacity vertical
- 23–Medium high capacity vertical
- 24–High capacity vertical
- 25–Super high capacity vertical
- 26–Ultra high capacity vertical


OPERATION


Trap Closed – After trap is installed and primed, steam entering the trap collects in the top of the bucket, floating the bucket and forcing the valve into its seat.

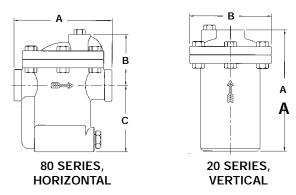
Trap Begins to Open – As condensate begins to flow into the trap, steam and air are forced from the bucket. This causes the bucket to begin losing buoyancy, tending to pull the valve from its seat.

Trap Discharges – When enough condensate has entered the trap, displacing the steam and air, the bucket drops, pulling the valve from the seat and allowing condensate and air to discharge.

Trap Closes – As the flow of condensate stops, steam enters the trap and refloats the bucket, forcing the valve into its seat. The cycle then repeats as more condensate reaches the trap.

DURA-FLO INVERTED BUCKET STEAM TRAPS

SPECIFICATION


Furnish and install as shown on the plans, inverted bucket traps capable of discharging condensate, air and other noncondensible gases without loss of steam. These traps shall have a heavy cast iron body, hardened stainless steel valve and seat, all stainless steel linkage and bucket, and an asbestos free fiber cover gasket.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	see orifice selection
TMO: Max. Operating Temperature	saturated at pressure
PMA: Max. Allowable Pressure	250 psig (17.2 barg)
TMA: Max. Allowable Temperature	450°F (232°C)

MATERIALS OF CONSTRUCTION

Body & Cover	Cast Iron ASTM-A-126/A48
Bucket & Linkage	Stainless Steel
Valve & Seat	Hardened Chrome Steel
Standpipe	Steel Pipe
Cover Gasket	Asbestos Free Fiber

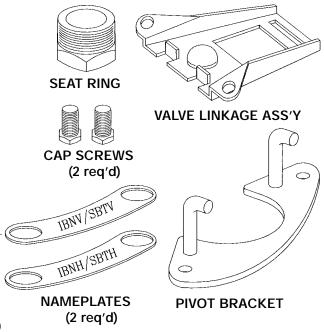
Connections: ½" – 2½" NPT

DURA-FLO Dimension Table										
Trap	End		Inches (mm)		Weight					
	Connections	Α	B	С	Lbs (kg)					
80S	1/2, 3/4	51/16	2 ¹ 1/16	3½	7					
		(129)	(69)	(89)	(3.2)					
81S	1/2, 3/4, 1	51/16	211/16	4 ⁷ /16	8					
		(129)	(69)	(113)	(3.6)					
82S	1/2, 3/4	7	31/8	5 ⁷ /16	22					
		(178)	(98)	(138)	(10.0)					
83S	³ ⁄ ₄ , 1	81⁄8	5	7%	32					
		(206)	(127)	(194)	(14.5)					
84	1, 1¼	9	5¾	7 ¹³ /16	47					
		(229)	(146)	(199)	(21.3)					
85	1½, 2	10¼	8	8%	74					
		(260)	(203)	(213)	(33.6)					
86	2, 2½	13	9¾	11	140					
		(330)	(248)	(279)	(63.5)					
21	1/2	6%	4¼	—	6.5					
		(162)	(108)		(2.9)					
22	1/2, 3/4	8	5%	—	16					
		(203)	(143)		(7.3)					
23	3⁄4, 1	10½	6 ⁷ /s	—	28					
		(267)	(175)		(12.7)					
24	1, 1¼	12½	7½	—	35					
		(318)	(190)		(15.9)					
25	1, 1½	14%	9 ¼6	—	60					
		(365)	(230)		(27.2)					
26	1½, 2	16 ¹ ‰	10¼	—	90					
		(424)	(260)		(40.8)					

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

DURA-FLO CAPACITY TABLES

Trap	0	rifice	0.50	1	5	10	15	20	25	30	40	60	70	80	100	125	130	150	180	200	225	250
l nup	Size	Max ΔP	(.034)	(.069)	(.345)	(.690)	(1.03)	(1.38)	(1.72)	(2.07)	(2.76)	(4.14)	(4.83)	(5.52)	(6.90)	(8.62)	(8.97)	(10.3)	(12.4)	(13.8)	(15.5)	(17.2)
	3/16	20	200	270	450	560	640	690	()	(2.07)	(2.7.0)	<u>,</u>	(1100)	(0.02)	(0170)	(0.02)	(0177)	(1010)	(1211)	(1010)	(1010)	
	1/8	80	80	110	200	300	360	420	460	500	540	620	660	690								
80S	7/64	125	-	55	90	145	195	260	305	345	400	485	525	565	640	680						
	3/32	150	-	-	70	110	150	200	240	270	310	380	410	440	480	540	545	570				
	1/4	15	300	450	830	950	1060															
	3/16	30	190	300	540	670	770	880	950	1000												
81S	5/32	70	100	165	180	430	495	585	655	710	770	900	950									
& 21	1/8	125	70	130	220	340	390	460	515	560	610	710	760	800	860	950						
	7/64	200	-	65	150	230	275	335	375	405	455	545	580	610	665	735	780	810	850	860		
	3/32	250	-	-	100	150	190	240	270	290	340	420	450	470	520	575	585	620	670	700	730	760
	5/16	15	570	850	1600	1900	2100															
	1/4	30	350	500	950	1380	1630	1800	1900	2050												
82S & 22	3/16	70	250	420	785	950	1120	1260	1395	1500	1700	2000	2200									
22	5/32	125	180	300	560	680	800	900	995	1070	1220	1440	1550	1650	1800	2000						
	1/8	200	100	180	325	465	505	575	650	710	805	980	1050	1105	1225	1375	1410	1500	1560	1600		
	7/64	250	75	130	240	340	370	420	480	520	590	720	770	810	900	1010	1020	1100	1170	1230	1280	1300
	1/2	15	1410	1880	2900	3500	3900															
	3/8	30	990	1400	2300	2700	3300	3500	3800	4000												
83S	5/16	60	600	940	1730	2045	2510	2825	2995	3135	3800	4400										
83S & 23	9/32	80	510	735	1350	1595	1960	2205	2340	2450	2880	3490	3800	4000								
	1/4	125	385	600	1100	1300	1600	1800	1910	2000	2350	2850	3100	3300	3600	3900						
	7/32	180	300	490	860	1165	1350	1595	1865	2085	2205	2510	2695	2820	3065	3185	3300	3500	3700			
	3/16	250	255	400	700	950	1100	1300	1520	1700	1800	2050	2200	2300	2500	2600	2700	2800	3020	3200	3400	3500
	5/8	15	2160	2900	4800	5800	6500	(000	(500	(000												
	1/2	30	1450	2250	3700	4750	5200	6000	6500	6800	F000	(000										
84	3/8	60	1050	1750	2950	3550	4000	4700	5000	5400	5800	6800 5750	4000	6400								
84 & 24	11/32	80 125	800	1560	2500	2900	3200	3500	4000	4400	4850	5750	6000	6400	4000	4700						
	5/16 9/32	125 180	660 550	1200 950	1950 1500	2450 1900	2750	3100	3250 2700	3500 2900	4000 3250	4800 3800	5250 4250	5600 4500	6200 4800	6700 5500	5600	5700	4000			
	9/32	250	350 350	930 580	1000	1250	2200 1450	2350 1800	2000	2900	2600	3150	4250 3350	4500 3500	4800 3800	4300	4450	4700	6000 5000	5300	5500	5700
	3/4	15	3100	4160	7600	9000	10000	1000	2000	2200	2000	3130	3330	3300	3000	4300	4430	4700	3000	3300	3300	
	9/16	30	1800	2900	5200	6400	7700	8500	9200	9800												
	7/16	60	1400	2200	3800	5000	6000	6600	7100	7600	8300	9500										
85	3/8	100	1100	1700	3000	3600	4500	5200	5800	6100	7000	8500	9200	9700	10400							
& 25	11/32		900	1500	2600		3900	4500		5400	6200					10900	11000					
20	5/16	180	750	1200	2100	2600	3200	3700	4100	4500	5400	6600	7000	7257	8118		9040.5	9500	10000			
	9/32	225	600	970	1700	2100	2600	2950	3300	3600	4500	5400	5700	5900	6600	7300	7350	7850	8400	9200	9800	
	1/4	250	400	700	1200	1500	1900	2100	2400	2600	3200	3800	4000	4150	4600	5100		5500	5950	6350	6650	7000
	1-1/16	15	6240	8400		17300																
	7/8	25	4100	5490		12930		18500	20000													
	3/4	40	2900	4500	8200	10600			16700	18000	20000											
86	5/8	60	2100	3500	6900	8700	10600	12100			16300											
86 & 26	9/16	80	1900	3095	6000	7600	9300	10600	11700			17300	18300	19000								
	1/2	125	1600	2600	5000	6400	7800	8900	9800	10500		14500			18000	20000						
	7/16	180	1400	2210	4180	5530	6640	7500	8490	9230							17900	18500	20000			
	3/8	250	1000	1800	3400	4500	5400	6100	6900	7500	8500						14300			17500	18500	19000
<u> </u>	/ L.	Multiply		Γ 4															1			


For Kg/Hr Multiply by .454

DURA-FLO INVERTED BUCKET STEAM TRAPS PCA REPAIR KITS

Quick, easy and economical Simplifies and standardizes inventory All stainless steel corrosion resistant internal parts Hardened stainless steel condensate valves and seats for extra long life

MODELS

- 80S-Orifice ratings 20, 80, 125, 150
- 81S & 21-Orifice ratings 15, 30, 70, 125, 200, 250
- 82S & 22–Orifice ratings 15, 30, 70, 125, 200, 250
- 83S & 23-Orifice ratings 15, 30, 60, 80, 125, 180, 250
- 84 & 24–Orifice ratings 15, 30, 60, 80, 125, 180, 250
- 85 & 25-Orifice ratings 15, 30, 60, 100, 130, 180, 225, 250
- 86 & 26-Orifice ratings 15, 25, 40, 60, 80, 125, 180, 250

Supplied in a labeled, clear plastic bag.

FTN SERIES FLOAT & THERMOSTATIC STEAM TRAPS REPAIR KITS

High quality replacement kits

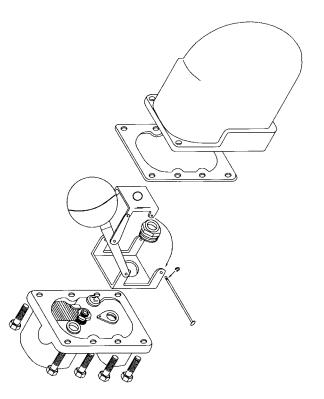
Rebuild existing F & T Traps far more economically than replacement

Quick, easy and economical

Simplifies and standardizes inventory

All stainless steel corrosion resistant internal parts Hardened stainless steel condensate valves and seats for extra long life

Repairs other leading manufacturers' F & T Traps


MODELS

- FTN-15 available in 34", 1", 114", 112" and 2"
- FTN-30 available in 34", 1", 114", 112" and 2"
- FTN-75 available in ¾", 1", 1¼", 1½" and 2"
- FTN-125 available in ¾", 1", 1¼", 1½" and 2"

All $\ensuremath{3^{\prime\prime}}$ and 1" kits as well as 1 $\ensuremath{4^{\prime\prime}}$ FTN-15 and FTN-30 kits supplied with cover assembly.

All 1¼" FTN-75 and FTN-125 kits as well as all 1½" and 2" kits supplied as mechanism complete.

See Capacity Charts on page 37

Consult factory for latest crossover fitments.

APPLICATIONS

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit Heaters
- Oil Preheaters
- Converters
- Coils
- Rotating Drum

Canadian Registration #: OE10389.52

For information on Big Block UMTVS-BB Connector SEE PAGE 116

OPERATION

After trap is installed and primed, steam entering the trap collects in the top of the bucket, floating the bucket and forcing the valve into its seat. As condensate begins to flow into the trap, steam and air are forced from the bucket. This causes the bucket to begin losing buoyancy, tending to pull the valve from its seat. When SEALED STAINLESS STEEL DURA-FLO INVERTED BUCKET STEAM TRAPS

Pressures to 650 PSIG (45 barg) Temperatures to 497°F (258°C)

Easy Trap Replacement — Universal two bolt swivel mounting option simplifies removal from system.

Simple Installation — Stainless mounting Block mounts permanently into system. Trap installs via two bolt universal mount connection.

Hardened Chrome Steel Valve and Seat — Long life and maximum corrosion resistance.

Stainless Steel Bucket — Long lasting, rugged and naturally resistant to water hammer.

Inexpensive — Low maintenance and initial cost.

Stainless Steel Body — Durable heavy wall construction provides years of reliable service and resists corrosion and freezing.

Suitable for Wide Variety of Loads/Applications — Horizontal models in three body sizes.

Resists Dirt and Scale — Valve and seats positioned at top of traps ensure long service.

Maintenance Free (TSBT-_S and USBT-_S) — Sealed design prevents unnecessary tampering. Trap can be inspected and replaced without breaking pipe.

Freeze Resistant — Extruded SS Body helps prevent problems associated with freezing conditions.

MODELS

NPT CONNECTION

- TSBT-LS Low Capacity, 200 PSIG
- TSBT-MS Medium Capacity, 340 PSIG
- TSBT-HS High Capacity, 650 PSIG

UMT CONNECTION

- USBT-LS Low Capacity, 200 PSIG
- USBT-MS Medium Capacity, 340 PSIG
- USBT-HS High Capacity, 650 PSIG

UMT CONNECTOR BLOCKS

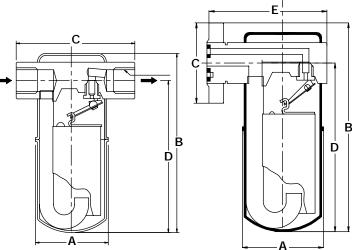
- UMTC-Standard connector (1/2" & 3/4" only)
- UMTCY-RH–Right Hand Connector with Y Strainer
- UMTCY-LH–Left Hand connector with Y Strainer
- UMTVS-BB-Connector with Isolation Valves, Strainer, Blowdown Valve and Test Port

enough condensate has entered the trap, displacing the steam and air, the bucket drops, pulling the valve from the seat and allowing condensate and air to discharge. As the flow of condensate stops, steam enters the trap and re-floats the bucket, forcing the valve into its seat. The cycle then repeats as more condensate reaches the trap.

SEALED STAINLESS STEEL DURA-FLO INVERTED BUCKET STEAM TRAPS

SPECIFICATION

Furnish and install as shown on the plans, inverted bucket traps capable of discharging condensate, air and other non-condensable gases without loss of steam. These traps shall have a stainless steel sealed body, hardened chrome steel valve and seat and an all stainless steel linkage and bucket. It shall have a universal mount connector option.


MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure See Orifice Selection TMO: Max. Operating Temperature Saturated at PMO

PMA: Max. Allowa	ble Pressure -								
LS 200 psig	(13.8 barg)	at	450°F	(232°C)					
MS 307 psig	g (21.2 barg)	at	450°F	(232°C)					
HS 650 psig	(44.8 barg)	at	497°F	(258°C)					
TMA: Max. Allowable Temperature -									
	MS, LS & H	S -	800°F	(425°C)					

MATERIALS OF CONSTRUCTION

Body	AISI 304 SS
Bucket	AISI 304 SS
Bucket Clip	AISI 304 SS
Lever	AISI 304 SS
Inlet Tube	AISI 304 SS
ValveHa	ardened Chrome Steel AISI D3
Valve SeatHa	ardened Chrome Steel AISI D3
Connector	AISI 304 SS

TSBT SEALED SERIES

USBT SEALED SERIES

Connections: 3/8" – 1" NPT

DIMENSIONS inches (mm) **AND WEIGHTS** pounds (kg)

Model		Weight			
WOUEI	A	В	С	D	lbs(kg)
TSBT-LS	2¾	5%₀	4%₀	4%	2.25
	(70)	(142)	(110)	(116)	(1)
TSBT-MS	2¾	6 %₀	4⁵⁄1₀	5%	2.5
	(70)	(167)	(110)	(141)	(1.1)
TSBT-HS	3%	8 %6	5	7¾	7
	(99)	(218)	(127)	(187)	(3.2)

Connections: Universal Mount Two Bolt Swivel Connection

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)

Model		Weight				
Wouer	Α	В	С	D	E	lbs(kg)
USBT-	2¾	6	2¾	4⁵‰	4	4.25
LS	(70)	(152)	(70)	(117)	(101.6)	(2)
USBT-	2¾	7¾₀	2¾	5 ¹³ /16	4	4.75
MS	(70)	(183)	(70)	(148)	(101.6)	(2.2)
USBT-	3%	8¾	2¾	7 %	5	7
HS	(99)	(222)	(70)	(187)	(127)	(3.2)

Maximum Capacity-(lbs/hr)

	Ori	fice		Differential Pressure											
Trap			5	10	15	30	40	70	80	125	200	250	300	400	650
	Size	MOP	(0.34)	(0.69)	(1.03)	(2.07)	(2.76)	(4.83)	(5.52)	(8.62)	(13.79)	(17.24)	(20.69)	(27.59)	(44.83)
SBT-LS & TSBT-LS	3/32	200	85	120	145	200	230	300	325	400	500				
	1/4	15	800	920	1040										
	3/16	30	540	690	800	1000									
USBT-MS	5/32	70	390	490	560	700	790	940							
&	1/8	125	260	325	400	530	600	750	800	970					
TSBT-MS	7/64	200	200	265	315	410	470	580	610	720	900				
	3/32	250	155	200	240	315	360	440	480	560	690	750			
	5/64	400	100	130	155	210	235	280	310	360	440	460	510	580*	
	1/4	40	1040	1350	1580	2000	2350								
USBT-HS	3/16	80	680	930	1120	1550	1775	2400	2300						
&	1/8	250	320	42	510	700	790	1020	1090	1300	1650	1800			
TSBT-HS	7/64	300	220	280	325	430	500	630	685	800	1000	1100	1200		
	3/32	650	175	225	270	370	400	510	540	650	800	870	930	1050	1300

For Kg/Hr Multiply by .454

* CRN not available

APPLICATIONS

- Steam Lines
- Process Equipment
- Steam Cookers
- Steam Heated Vats
- Pressing Machinery
- Unit Heaters
- Oil Preheaters
- Converters
- Coils
- Rotating Drum

Canadian Registration # OE10389.52

For information on Big Block UMTVS-BB Connector SEE PAGE 116

REPAIRABLE STAINLESS STEEL DURA-FLO INVERTED BUCKET STEAM TRAPS

Pressures to 650 PSIG (45 barg) Temperatures to 497°F (258°C)

Easy Trap Replacement — Universal two bolt swivel mounting option simplifies removal from system.

Simple Installation — Stainless mounting Block mounts permanently into system. Trap installs via two bolt universal mount connection.

Hardened Chrome Steel Valve and Seat — Long life and maximum corrosion resistance.

Stainless Steel Bucket — Long lasting, rugged and naturally resistant to water hammer.

Inexpensive — Low maintenance and initial cost.

Stainless Steel Body — Durable heavy wall construction provides years of reliable service and resists corrosion and freezing.

Suitable for Wide Variety of Loads/Applications — Horizontal models in three body sizes.

Resists Dirt and Scale — Valve and seats positioned at top of traps ensure long service.

Repairable Model (TSBT-_R & USBT-_R) — Removable cover allows pressure change or repair with existing Dura-Flo PCA kits.

MODELS

NPT CONNECTION, REPAIRABLE

- TSBT-LR Low Capacity, 200 PSIG
- TSBT-MR Medium Capacity, 400 PSIG
- TSBT-HR High Capacity, 650 PSIG

UMT CONNECTION, REPAIRABLE

- USBT-LR Low Capacity, 200 PSIG
- USBT-MR Medium Capacity, 400 PSIG
- USBT-HR High Capacity, 650 PSIG

UMT CONNECTOR BLOCKS

- UMTC–Standard connector (1/2" & 3/4" only)
- UMTCY-RH–Right Hand Connector w/Y strainer*
- UMTCY-LH-Left Hand Connector w/Y strainer*
- UMTVS-BB-Connector with Isolation Valves, Strainer, Blowdown Valve and Test Port

OPERATION

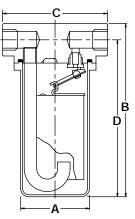
After trap is installed and primed, steam entering the trap collects in the top of the bucket, floating the bucket and forcing the valve into its seat. As condensate begins to flow into the trap, steam and air are forced from the bucket. This causes the bucket to begin losing buoyancy, tending to pull the valve from its seat. When enough condensate has

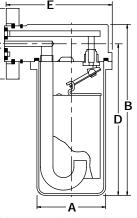
entered the trap, displacing the steam and air, the bucket drops, pulling the valve from the seat and allowing condensate and air to discharge. As the flow of condensate stops, steam enters the trap and re-floats the bucket, forcing the valve into its seat. The cycle then repeats as more condensate reaches the trap.

REPAIRABLE STAINLESS STEEL DURA-FLO INVERTED BUCKET STEAM TRAPS

SPECIFICATION

Furnish and install as shown on the plans, inverted bucket traps capable of discharging condensate, air and other non-condensable gases without loss of steam. These traps shall have a stainless steel sealed body, hardened chrome steel valve and seat and an all stainless steel linkage and bucket. It shall also have a universal mount connection option. The repairable traps shall have a removable cover to allow repair or orifice change.


MAXIMUM OPERATING CONDITIONS


PMO: Max. Operating Pressure TMO: Max. Operating Temperature See Orifice Selection Saturated at PMC									
PMA: Max. Allowable Pressure -									
	LR 200 psig (13.8 barg) at								
MR 420 psig		at	450°F	(232°C)					
HR 650 psig	(44.8 barg)	at	497°F	(258°C)					
TMA: Max. Allowab	800°F	(425°C)							

MATERIALS OF CONSTRUCTION

BodyASTM A351 CF8
CoverASTM A351 CF8
BucketAISI 304 SS
Bucket ClipAISI 304 SS
LeverAISI 304 SS
nlet TubeAISI 304 SS
ValveHardened Chrome Steel AISI D3
Valve SeatHardened Chrome Steel AISI D3
Swivel ConnectorAISI 304 SS
Cover GasketSpiral Wound 304 SS with Grafoil

Maximum Capacity—(lbs/hr)

TSBT REPAIRABLE SERIES

USBT REPAIRABLE SERIES

Connections: 3/8" - 1" NPT

DIMENSIONS inches (mm) **AND WEIGHTS** pounds (kg)

		Weight								
Model	А	В	С	D	lbs(kg)					
TSBT-LR	2%	6¼	4%	5%	6.6					
	(73)	(159)	(110)	(141)	(3.0)					
TSBT-MR	2 ⁷ ⁄⁄8	7 ¼	45⁄‰	6 %₀	7.2					
	(73)	(184)	(110)	(166)	(3.2)					
TSBT-HR	4 ¹ ⁄⁄8	9 ½	5	8 ½	22					
	(104.8)	(241.3)	(127)	(215.9)	(10)					

Connections:	
Universal Mount Two Bolt Swivel Connection	

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)

Model		Weight				
woder	А	В	С	D	Е	lbs(kg)
USBT-	21/8	6%	2¾	5%	4¼	7.25
LR	(73)	(161)	(70)	(143)	(108)	(3.3)
USBT-	21/8	7%	2¾	6⁵‰	4 ¹ / ₄	8
MR	(73)	(186)	(70)	(168)	(108)	(3.6)
USBT-	4½	9 ¾	2¾	8 ¾	6¼	25
HR	(104.8)	(247.7)	(70)	(222.3)	(158.8)	(11.33)

	0-	6						Differe	ential Pre	essure					
Тгар	Ori	fice	5	10	15	30	40	70	80	125	200	250	300	400	650
	Size	MOP	(0.34)	(0.69)	(1.03)	(2.07)	(2.76)	(4.83)	(5.52)	(8.62)	(13.79)	(17.24)	(20.69)	(27.59)	(44.83)
TSBT-LR, USBT-LR	3/32	200	85	120	145	200	230	300	325	400	500				
	1/4	15	800	920	1040										
	3/16	30	540	690	800	1000									
TSBT-MR,	5/32	70	390	490	560	700	790	940							
USBT-MR	1/8	125	260	325	400	530	600	750	800	970					
	7/64	200	200	265	315	410	470	580	610	720	900				
	3/32	250	155	200	240	315	360	440	480	560	690	750			
	5/64	400	100	130	155	210	235	280	310	360	440	460	510	580	
	1/4	40	1040	1350	1580	2000	2350								
TSBT - HR	3/16	80	680	930	1120	1550	1775	2400	2300						
USBT-HR	1/8	250	320	42	510	700	790	1020	1090	1300	1650	1800			
	7/64	300	220	280	325	430	500	630	685	800	1000	1100	1200		
	3/32	650	175	225	270	370	400	510	540	650	800	870	930	1050	1300

LIQUIDATOR UMT-TD Series Thermodynamic Applications Steam Trap Laundry Equipment Unit Heaters

- Steam Tracing
- Plating Tanks
- Drip Legs
- Platen Presses
- Tire Presses
- Cooking Equipment

Pressures To 450 PSIG Temperatures to 650°F

Easily Maintained

Four bolt cover permits easy in-line rebuilding for less than the cost of replacement.

Optional Integral Strainer

Helps prevent dirt and scale build-up on valve seat.

Excellent Energy Savings

Positive shutoff assures no loss of steam during normal operation.

Fits all Universal Connectors

Liquidator body will replace any manufacturers' universal mount trap body.

Easily Replaced

Two bolt design permits rapid removal without breaking pipe connections.

Freeze Proof

Self draining when installed vertically.

Durability and Long Service Life

Stainless steel body and cover with stainless steel Celtron[®] Cartridge for maximum corrosion, thermal and hydraulic shock resistance.

Unaffected by Ambient Conditions

Steam jacketing minimizes steam loss.

Blast Discharge

Clears away dirt and scale.

3 Year Guarantee

Guaranteed against defects in material and workmanship.

THERMODYNAMIC Steam Traps

NICHOLSON has a wide variety of Thermodynamic Steam Traps to accommodate applications through 600 psi. Most models utilize **NICHOLSON** 's exclusive Celtron® Cartridge. The Celtron® facilitates inline maintenance while simultaneously providing superior performance. The all-stainless NTD 600 is the value leader of the line, providing the performance **NICHOLSON** users have come to expect in a conventional, recognizable design.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

NTD600 SERIES THERMODYNAMIC STEAM TRAPS

Pressures To 600 PSIG (41.3 barg) Temperatures to 800°F (426°C)

Compact Design — Hardened stainless steel disc is the only moving part.

Inexpensive — Low initial cost is less expensive than repairable technologies.

Simplifies Installation — Works in any position.

Rugged — Handles water hammer and superheat.

Reliable, **Efficient Operation** — Blast discharge helps to eliminate dirt buildup and provides tight shutoff

Freeze resistant — Self draining design prevents freezing.

All Stainless Steel Construction — Resists both internal and external corrosion.

Easy to Monitor — Audible discharge cycle makes checking operation simple.

MODELS

- NTD600–Thermodynamic Disc Trap
- NTD600S-NTD600 with integral strainer
- NTD600B-NTD600S with blowdown valve

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

OPERATION

Incoming air and condensate flow through the trap body and into the control chamber. Line pressure raises the disc off the seat allowing complete discharge. When flashing condensate enters the cartridge, flow velocity increases, creating low pressure underneath the disc. Flashing condensate at high velocity strikes the inside wall of the disc chamber and is deflected to the top of the disc causing a pressure buildup. The disc is forced down onto the seat by this pressure imbalance. The trap remains closed as flashed vapor in the control chamber keeps the disc seated. Pressure inside the cap is not lowered until the trapped flash vapor condenses due to body radiation. Condensing steam lowers the pressure above the disc. Disc is then lifted and the cycle repeated.

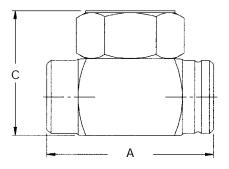
Steam TracingDripsHeating

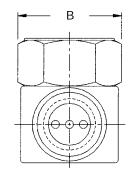
APPLICATIONS

NTD600 Model Only: Canadian Registration # OE0591.9C

NTD600 SERIES THERMODYNAMIC STEAM TRAPS

SPECIFICATION

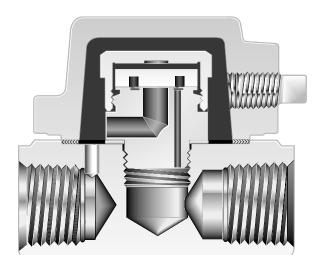

Steam trap shall be of thermodynamic design. Body shall be of all stainless construction and hardened throughout. Seat shall be integral to body. Cover shall seal to body without gaskets or seals. Trap shall be suitable for pressures through 600 psi and available in 3/8" through 1".


MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	600 psig	(41.3 barg)
TMO: Max. Operating Temperature	800°F	(426°C)
PMA: Max. Allowable Pressure	600 psig	(41.3 barg)
TMA: Max. Allowable Temperature	800°F	(426°F)

MATERIALS OF CONSTRUCTION

Body420F SS AS	STM A743 CA40F
Cap & Disc410	5 SS ASTM A582
Blow Down Valve	
Screen	Stainless Steel


Connections: %" -	1"	NPT	
-------------------	----	-----	--

Dimensio	Dimensions in inches (mm)										
Size	A	(kg)									
³ /8"	2	1 ³ /4	1 ³ /4	.8							
	(51)	(44)	(44)	(.36)							
1/2"	2 ¹¹ /16	1 ³ /4	2	1.2							
	(68)	(44)	(51)	(.55)							
3/4"	2 ¹³ /16	2 ⁵ /16	2 ⁷ /16	1.85							
	(71)	(59)	(62)	(.86)							
1"	3 ⁵ /16	2 ¹ /2	2 ⁷ /8	3.1							
	(84)	(64)	(73)	(1.8)							

Maximun	Maximum Capacity—Ibs/hr 10°F Below Saturation													
		Differential PSIG (barg)												
NPT Connection	3.5 (0.24)	5 (0.34)	10 (0.7)	20 (1.4)	30 (2.1)	50 (3.4)	75 (5.2)	100 (6.9)	150 (10.3)	200 (13.8)	300 (20.7)	400 (27.6)	500 (34.5)	600 (41.3)
3/8"	180	185	190	200	215	245	305	370	500	610	790	960	1100	1250
1/2"	300	310	345	410	465	575	700	810	1000	1140	1410	1630	1830	2000
3/4"	405	420	470	560	640	810	1000	1160	1450	1670	2100	2430	2750	3050
1"	640	670	725	865	980	1200	1470	1750	2200	2600	3250	3780	4250	4700

For Kg/Hr Multiply by .454

NOTE: The NTD600 Series works efficiently at all line pressures between 5+600 psi and back pressures up to 80% of line pressures.

Shown with optional tapped blowdown connection.

APPLICATIONS

- Steam Tracing
- Drips
- Heating

OPTIONS

- SW Socketweld Connections
- TB Tapped Blowdown Connection
- B Blowdown Valve

Canadian Registration # 0E0591.9

S610 SERIES THERMODYNAMIC STEAM TRAP

Pressures To 600 PSIG (41.3 barg) Temperatures to 800°F (426°C)

Improved Energy Savings — Lowers steam waste due to steam jacketing. Trap cycle is unaffected by ambient temperatures or precipitation.

Extended Trap Life — Integral strainer keeps disc and seat clean. Non-violent discharge reduces wear. Heavy disc prevents warpage and improves performance.

Easily Maintained — Completely renewable without disturbing piping connections by removing cover, unscrewing and replacing Celtron® cartridge. Celtron® replacement cartridges are packaged individually with cover and gaskets in a protective bag.

Freeze Proof — When mounted vertically or on its side horizontally.

Multi-functional — Integral check valve eliminates need for additional fittings.

Economical — First cost and maintenance cost are low.

Spiral-wound Cover Gasket — assures positive closure.

Integral Strainer — prevents dirt problems.

MODELS

- S610–3/8" & 1/2" standard capacity
- S610L-Low capacity on S610

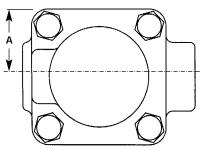
Celtron®

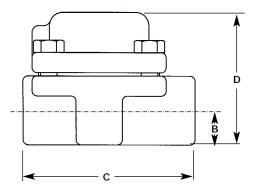
plastic-packed replaceable cartridge for fast and simple replacement

OPERATION

Incoming air and condensate flow through the trap body and into the Celtron® cartridge. Line pressure raises the disc off the seat allowing complete discharge. When flashing condensate enters the cartridge, flow velocity increases, creating low pressure underneath the disc. Flashing condensate at high velocity strikes the inside wall of the disc chamber and is deflected to the top of the disc causing a pressure buildup. The disc is forced down onto the seat by this pressure imbalance. The trap remains closed as steam in the jacket prevents exposure of the Celtron® cartridge to ambient temperatures. Pressure inside the cap is not lowered until the trapped flash vapor condenses. Condensing steam lowers the pressure above the disc. Disc is then lifted and the cycle repeated.

S610 SERIES THERMODYNAMIC STEAM TRAP SPECIFICATION


Steam trap shall be of thermodynamic cartridge design. Body shall be of forged carbon steel construction housing stainless steel Celtron cartridge. Celtron cartridge shall contain all working components. Cartridge shall be hardened throughout. Seat shall be stress relieved to eliminate warpage. Trap shall contain integral strainer with available blowdown port and valve. Cover shall seal to body utilizing spiral wound graphite gasket. Trap shall be suitable for pressures through 600 psi and available in 3/8" through 1/2".


MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure600 psig(41.3barg)TMO: Max. Operating Temperature800°F(426°C)PMA: Max. Allowable Pressure650 psig(44.8 barg)TMA: Max. Allowable Temperature800°F(426°C)

MATERIALS OF CONSTRUCTION

Body & Cover:ASTM A105 Forged Steel Celtron® Cartridge416 SS w/Hardened Disc & Seat Cover Gasket304 SS Spiral Wound w/Graphite Fill Bolts:High Temperature Alloy Integral Strainer:304 Stainless Steel

Connections: 3/8"–1/2" NPT or Scoketweld

Dimensio	Dimensions in inches (mm)								
Size	Size A B C D								
3/8"_ 1/2"	1 ¹⁷ /64	21/ ₃₂	31/4	2 ¹⁵ /32	2.3 lbs				
	(32)	(17)	(83)	(63)	(1.05)				

Maximum Capacity—Ibs/hr 10°F Below Saturation											
NPT Threaded		Differential – PSIG (barg)									
or Socketweld	Trap	5	10	25	50	75	100	200	300	400	600
Connections		(0.34)	(0.7)	(1.7)	(3.4)	(5.2)	(6.9)	(13.8)	(20.7)	(27.6)	(41.3)
3/8" – 1/2"	S610L	105	150	235	330	395	435	550	630	690	790
3/8" – 1/2"	S610	240	265	420	590	700	770	980	1120	1240	1400

For Kg/Hr Multiply by .454

The S610 Series trap works efficiently at all line pressures between 5 and 600 psi and back pressures to 80% of line pressure.

Shown with optional blowdown valve

APPLICATIONS

- Steam Tracing
- Drips
- Heating

OPTIONS

- B Blowdown Valve
- SW Socketweld Connections

Canadian Registration # 0E0591.9

S650 SERIES THERMO-ACTIVE STEAM TRAP

Pressures To 600 PSIG (41.3 barg) Temperatures to 800°F (427°C)

Space Saving — Design incorporates a built-in strainer and optional blowdown valve. Eliminates four connections and four fittings.

Improved Energy Savings — Lowers steam waste due to steam jacketing. Trap cycling is unaffected by ambient temperatures.

Non-violent Discharge — Soft discharge which is unique in a steam trap of this type.

Easily Maintained — Completely renewable without disturbing piping connections by removing cover, unscrewing and replacing Celtron® cartridge. Celtron® replacement cartridges are packaged individually with cover and gaskets in a protective bag. Optional blowdown valve permits easy strainer cleaning while in service.

Freeze Proof — When mounted vertically or on its side horizontally.

Low in Cost — Purchase and maintenance costs are low.

Models

- S650–Y pattern body with screen and blowdown port tapped and plugged
- S650L–Low capacity on S650

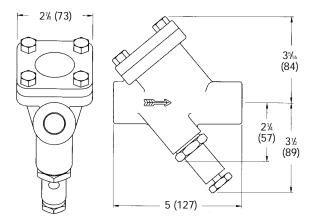
Celtron®

plastic-packed replaceable cartridge for fast and simple replacement

OPERATION

Incoming air and condensate flow through the trap body and into the Celtron® cartridge. Line pressure raises the disc off the seat allowing complete discharge. When flashing condensate enters the cartridge, flow velocity increases, creating low pressure underneath the disc. Flashing condensate at high velocity strikes the inside wall of the disc chamber and is deflected to the top of the disc causing a pressure buildup. The disc is forced down onto the seat by this pressure imbalance. The trap remains closed as steam in the jacket prevents exposure of the Celtron® cartridge to ambient temperatures. Pressure inside the cap is not lowered until the trapped flash vapor condenses. Condensing steam lowers the pressure above the disc. Disc is then lifted and the cycle repeated.

S650 SERIES THERMO-ACTIVE STEAM TRAP SPECIFICATION


Steam trap shall be of thermodynamic cartridge design. Body shall be of forged carbon steel construction housing stainless steel Celtron cartridge. Celtron cartridge shall contain all working components. Cartridge shall be hardened throughout. Seat shall be stress relieved to eliminate warpage. Trap shall contain integral Y pattern strainer with available blowdown valve. Cover shall seal to body utilizing spiral wound graphite gasket. Trap shall be suitable for pressures through 600 psi and available in 1/2"-3/4" NPT.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure600 psig(41.3 barg)TMO: Max. Operating Temperature800°F(426°C)PMA: Max. Allowable Pressure650 psig(44.8 barg)TMA: Max. Allowable Temperature800°F(426°C)

MATERIALS OF CONSTRUCTION

Body & CoverASTM A105 Forged Steel Celtron® Cartridge416 SS w/Hardened Disc & Seat Cover Gasket304 SS Spiral Wound w/Graphite Fill Strainer033 perf. 304 Stainless Steel Blowdown Valve416 Stainless Steel

DIMENSIONS IN INCHES (MM) SHOWN WITH OPTIONAL BLOWDOWN VALVE WEIGHT: 5 LBS. (2.3 KG)

Connections: 1/2" or 3/4" NPT or socketweld

Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)										
	Differential PSIG (barg)									
Trap	5	10	25	50	75	100	200	300	400	600
	(0.34)	(0.7)	(1.7)	(3.5)	(5.2)	(6.9)	(13.8)	(20.7)	(27.6)	(41.3)
S650L	105	150	235	330	395	435	550	630	690	790
S650	240	265	420	590	700	770	980	1120	1240	1400

For Kg/Hr Multiply by .454

UMT-TD SERIES TRAP AND UMTC CONNECTOR

APPLICATIONS

- Steam Tracing
- Drips
- Light Process

OPTIONS

- SW Socketweld Connections
- B Blowdown Valve

Canadian Registration # 0E13886

For information on Big Block UMTVS-BB Connector SEE PAGE 116

OPERATION

Incoming air and condensate flow through the trap body and into the Celtron® cartridge. Line pressure raises the disc off the seat allowing complete discharge. When flashing condensate enters the cartridge, flow velocity increases, creating low pressure underneath the disc. Flashing condensate at high velocity strikes the inside wall of the disc chamber and is

LIQUIDATOR UMT-TD UNIVERSAL MOUNT THERMODYNAMIC STEAM TRAPS

Pressures To 450 PSIG (31 barg) Temperatures to 650°F (343°C)

Easily Maintained — Universal two bolt swivel mounting simplifies removal from system. Kits allow flexibility to replace or rebuild.

Simple Installation — Stainless mounting block mounts permanently into system. Trap installs via two bolt universal connection.

Improved Energy Savings — Lowers steam waste due to steam jacketing. Trap cycle is unaffected by ambient temperatures or precipitation.

Extended Trap Life — Integral strainer keeps disc and seat clean. Non-violent discharge reduces wear. Heavy disc prevents warpage and improves performance.

Easily Maintained — Completely renewable without disturbing piping connections by removing cover, unscrewing and replacing Celtron® cartridge. Celtron® replacement cartridges are packaged individually with cover and gaskets in a protective bag.

Freeze Proof — When mounted vertically or on its side horizontally.

Multi-functional — Integral check valve eliminates need for additional fittings.

Economical — First cost and maintenance cost are low.

MODELS

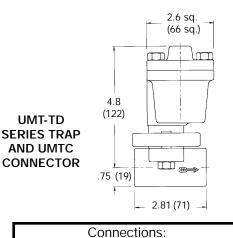
- UMT-TD10L-Low Capacity Trap
- UMT-TD10–Standard Capacity Trap
- UMTC-Standard connector (1/2" & 3/4" only)
- UMTCY–Connector w/Y strainer
- UMTCYR-Right Hand Connector w/Y strainer
- UMTCYL-Left Hand Connector w/Y strainer
- UMTVS-BB–Connector with Isolation Valves, Strainer, Blowdown Valve and Test Port

For complete unit, order trap and connector as separate items.

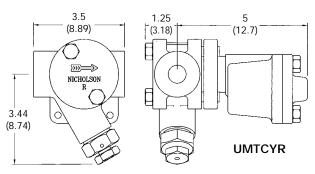
deflected to the top of the disc causing a pressure buildup. The disc is forced down onto the seat by this pressure imbalance. The trap remains closed as steam in the jacket prevents exposure of the Celtron® cartridge to ambient temperatures. Pressure inside the cap is not lowered until the trapped flash vapor condenses. Condensing steam lowers the pressure above the disc. Disc is then lifted and the cycle repeated.

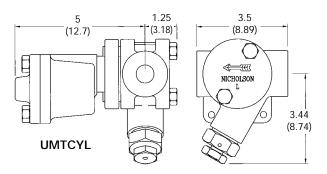
LIQUIDATOR UMT-TD UNIVERSAL MOUNT THERMODYNAMIC STEAM TRAPS

SPECIFICATION


Steam trap shall be of a thermodynamic capsule design. The body shall be of a 304 stainless steel 2 bolt universal swivel construction with a stainless steel in line renewable Celtron capsule. Celtron capsule shall contain all working components. Capsule shall be hardened throughout. Seat shall be stress relieved to eliminate warping. Trap shall seal to body with spiral wound graphite gaskets. Trap shall be suitable for pressures through 450 psi and available in 1/2" through 1" NPT or socketweld connections.

MAXIMUM OPERATING CONDITIONS


PMO: Max. Operating Pressure	450 psig	(31 barg)
TMO Max. Operating Temperature	650°F	(343°C)
PMA: Max. Allowable Pressure	450 psig	(31 barg)
TMA: Max. Allowable Temperature	650°F	(343°C)


MATERIALS OF CONSTRUCTION

Body & Cover:	ASTM A351 Grade CF8 (304)
Cover Gasket:	304 stainless spiral wound
	w/graphite fill
Celtron® Cartridge:41	6 Stainless Steel w/hardened
	disc & seat
Strainer:	033 perf.) 304 Stainless Steel
Mounting Block:	ASTM A351 Grade CF8 (304)

1/2", 3/4" or 1" NPT or socketweld

Dimensions - inches (mm) Weight Trap - 3.2 lbs. (1.4 kg) Std. Mounting Block - 1.1 lbs. (0.5 kg) Y Strainer Mounting Block - 2.3 lbs. (1.0 kg)

Maximum Capacity—Ibs/hr 10°F Below Saturation										
		Differential – PSIG (barg)								
Trap	5	10	25	50	75	100	200	300	400	450
	(0.34)	(0.7)	(1.7)	(3.4)	(5.2)	(6.9)	(13.8)	(20.7)	(27.6)	(31)
UMT-TD10L	105	150	235	330	395	435	550	630	690	715
UMT-TD10	240	265	420	590	700	770	980	1120	1240	1280

For Kg/Hr Multiply by .454

The UMT-TD Series trap works efficiently at all line pressures between 5 and 450 psi and back pressures to 80% of line pressure.

NOTES:

ORIFICE Steam Traps

NICHOLSON is an industry leader in orifice technology for condensate removal. The **NICHOLSON** technology (developed in conjunction with the US Navy in the 1970's) has provided nuclear and conventional vessels with safe, efficient condensate removal for more than a quarter century. This technology, adapted to commercial and industrial applications, provides consistent condensate removal via virtually maintenance free devices. These products, with life spans exceeding 10 years, further the **NICHOLSON** reputation for providing high performance products at competitive prices.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

APPLICATIONS

- Pressure Reduction
- Ratio of Flow-mixing two or more fluids at fixed ratio
- Fixed Flow-i.e. gland seal recirculation of cooling water on pumps, compressors, process analyzers, etc.
- Intermittent Drainage-i.e. air tools, air storage tanks, cleaning fixtures, air vents, etc.
- Cryogenic Storage Venting
- Low Pressure Blanking
- Sampling of process fluids at a fixed flow rate for use with Instrument Analyzers

Canadian Registration # 0E0591.9

TYPE DFA DRAIN ORIFICE STEAM TRAP

Pressures To 2500 PSIG (172 barg) Temperatures to 750°F (400°C)

MAINTENANCE BENEFITS

- Typical service life exceeds 10 years.
- Zero maintenance costs over the service life of the Orifice.
- No moving parts offers maintenance free operation when properly installed.
- Low spare parts inventory.
- Easy to install.

ENERGY SAVING BENEFITS

- Design factor results in reduced initial steam loss.
- Fuel savings to 50% achieved in applications during past 10 years.
- Maintains low rate of steam loss over entire service life.
- Cannot fail open, eliminating large steam losses.

OPERATING BENEFITS

- Accommodates varying condensate loads created by modulating pressures.
- Freeze proof.
- Resists thermal and hydraulic shock.
- Reduces make-up water to boiler and water chemical treatment costs.
- Maintains constant pressure to condensate return systems.
- Meets dimensional requirements of MS 18301 Specifications.

MODELS

- DFA–Drain Orifice Trap with gaskets and inlet screen.
- DFR-Replacement gasket kit including inlet screen.

OPERATION

The Nicholson Drain Orifice Trap is an engineered, continuous flow device. The controlling element in the Drain Orifice Assembly is a flat S.S. plate, 1/4" thick. Drain Orifices discharge air, condensate and all other non-condensible gases with minimal live steam loss. The fixed orifice size is calculated, for a given application, to discharge the condensate load at a maximum thermal efficiency. Approximately 10-25% of discharging hot condensate flashes to steam at the downstream side of the orifice, at a constant pressure drop. This flashing effect further restricts the flow of saturated steam. In actual conditions, a minimum percentage of steam, by weight, is discharged with condensate, since the specific volume of steam is large compared to that of the condensate. The velocity through the orifice is highly turbulent. The initial calculated steam loss can be expected to remain relatively constant over the expected 10+ years trap life. The major factor for energy efficient performance is based on initial orifice sizing for the application. Properly sized, thermal efficiencies of 98%+ can be attained. The Drain Orifice Trap is ideally suited for use on high pressure steam (saturated or superheated) from 600 PSIG to 2500 PSIG with minimum steam loss, zero maintenance and long service life.

TYPE DFA DRAIN ORIFICE STEAM TRAP SPECIFICATION

Orifice Drain shall comply with dimensional requirements of MILSPEC MS 18301 and consist of 1/4" 304 stainless orifice plate fixed between user supplied flanges. It shall be sealed by spiral wound gaskets. Inlet gasket shall be modified with a stainless steel mesh strainer affixed across the inside diameter. Orifice shall be sized for the application to a minimum of 0.020".

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure2500 psig(172 barg)TMO: Max. Operating Temperature750°F(400°C)PMA: Max. Allowable Pressure2500 psig(172 barg)TMA: Max. Allowable Temperature750°F(400°C)

MATERIALS OF CONSTRUCTION

SIZING*

Consult Factory-required information:	
Condensate Load	
Inlet Pressure	
Outlet Pressure	
Elevation of return line over trap (if any)	
* Specify orifice size when ordering .	

FLOW

Connections: 1/2" – 2" Wafer Style ANSI 150#, 600#, 1500# & 2500#

Dimensions				
Pipe Size NPT	Min. Pipe Bore (in.)*	Min. Orifice		
1/2"	9/16	.020		
3/4"	3/4	.020		
1"	7/8	.020		
1 1/4"	N/A	.020		
1 1/2"	N/A	.020		
2"	N/A	.020		

* Dome strainer used for sizes up to 1". Flat strainer used for larger sizes.

APPLICATIONS

- Condensate Removal
- Pressure Reduction
- Ratio of Flow-mixing two or more fluids at fixed ratio
- Fixed Flow-i.e. gland seal recirculation of cooling water on pumps, compressors, process analyzers, etc.
- Intermittent Drainage-i.e. air tools, air storage tanks, cleaning fixtures, air vents, etc.
- Cryogenic Storage Venting
- Low Pressure Blanking
- Sampling of process fluids at a fixed flow rate for use with Instrument Analyzers

OPTION

SW - Socketweld

Canadian Registration # 0E0591.9

TYPE DUA ORIFICE UNION ASSEMBLY

Pressures To 3000 PSIG (207 barg) Temperatures to 850°F (454°C)

Reliable Operation — High reliability labyrinth-type seal: leak tight seal is maintained when subjected to expansion or contraction due to temperature or pressure changes in the line. Positive, leak-tight seal eliminates loss of product.

Ease of Installation — No danger of damaging seats or losing seal by overtorquing during installation. Requires normal torque to obtain a leak-tight seal. Welding repairs reduced; no need to replace union components welded to pipe.

Low Cost Maintenance — Downtime, labor and material costs drastically reduced. Service is required only when the union is disassembled, then only a change of gaskets is required to put it back in service. Eliminates the need to replace the union housing.

Flexibility — Orifice easily replaced where a different orifice size is required for a specific application. Orifice can be redrilled to a larger size, if necessary, eliminating need to replace the entire assembly. Infinite range of orifice sizes available from a minimum 0.020" diameter.

MODELS

- DUA–Orifice Union
- RUA–Orifice Kit includes 2 gaskets, orifice plate and inlet screen.
- DUR-Gasket Kit includes 2 gaskets and inlet screen.
- SUG–Gasket Kit includes 10 gaskets.

OPERATION

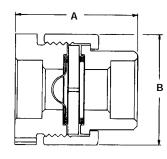
The Nicholson Drain Orifice Trap is an engineered, continuous flow device. The controlling element in the Drain Orifice Assembly is a flat S.S. plate, 1/4" thick. Drain Orifices discharge air, condensate and all other non-condensible gases with minimal live steam loss. The fixed orifice size is calculated, for a given application, to discharge the condensate load at a maximum thermal efficiency. Approximately 10-25% of discharging hot condensate flashes to steam at the downstream side of the orifice, at a constant pressure drop. This flashing effect further restricts the flow of saturated steam, In actual conditions, a minimum percentage of steam, by weight, is discharged with condensate, since the specific volume of steam is large compared to that of the condensate. The velocity through the orifice is highly turbulent. The initial calculated steam loss can be expected to remain relatively constant over the expected 10+ years trap life. The major factor for energy efficient performance is based on initial orifice sizing for the application. Properly sized, thermal efficiencies of 98%+ can be attained. The Drain Orifice Trap is ideally suited for use on high pressure steam (saturated or superheated) from 300 PSIG to 3000 PSIG with minimum steam loss, zero maintenance and long service life.

TYPE DUA ORIFICE UNION ASSEMBLY SPECIFICATION

Orifice Union shall consist of 1/4" 304 stainless steel plate fixed inside a gasketed union housing. Seal shall be provided by spiral wound gaskets whose inlet shall be modified with a stainless steel dome mesh strainer fixed across the inside diameter. Orifice shall be sized for the application to a minimum of 0.020 inches.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	see Chart
TMO: Max. Operating Temperature	see Chart


MATERIALS OF CONSTRUCTION

Body:	Forged Carbon Steel
Inlet Gasket:Spiral-wound	S.S./Graphite w/S.S. 60 mesh
	dome strainer insert
Orifice Plate:	
Outlet Gasket:	Spiral-wound S.S./Graphite

SIZING*

Consult Factory-required information:	
Condensate Load	
Inlet Pressure	
Outlet Pressure	
Elevation of return line over trap (if any)	
* Specify orifice size when ordering	

* Specify orifice size when ordering.

DUA

Connections: 1/2" - 1" NPT

Dimensions				
Pipe Size	Inc	Inches		
NPT	Α	В	Lbs.*	
1/2	2.42	1.8	1.2	
3/4	2.73	2.20	1.8	
1	2.94	2.57	2.6	

*Average weight-actual weights may vary slightly.

Temperature/Pressure Ratings				
Temperature* °F	Pressure (PSIG) Carbon Steel			
100	3000			
200	2735			
300	2655			
400	2565			
500	2425			
600	2220			
700	2155			

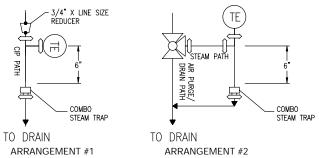
*Minimum recommended temperature is -20°F.

NOTES:

Clean Steam Products

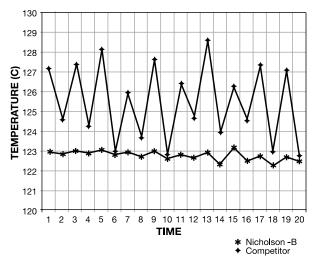
Clean Steam is high purity steam that is sterile and pyrogen free. It is used by hospitals and research institutions as well as in the Pharmaceutical, Biotechnical, Electronics, Food and Cosmetics Industries. *NICHOLSON* has become an innovator in Clean Steam applications through extensive research and development, working closely with major engineering firms in the pharmaceutical and biotechnical industries throughout the United States. From revolutionary new designs such as the CDH Series to the value oriented DS100 Series, *NICHOLSON* innovations set the standard for Clean Steam management.

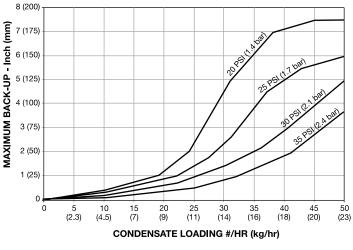
CLEAN STEAM PRODUCTS


Steam-in-place sterilization (SIP) systems for vessels and associated piping are highly engineered systems. There are several different arrangements used by the Biotech Industry to purge air, heat-up the vessel and maintain a steam temperature of 121°C for a minimum of 15 minutes. Typically clean steam is introduced to the top of the vessel and exits through feed lines, vent lines and drain lines. Air, steam and condensate typically flow through a three-way valve (Piping Diagram) located at the remote end of each pipeline. During this heat up stage the peak condensate loads shown in the table below are encountered. When the vessel is heated to 95°C, the air is considered to be sufficiently purged and the three-way valve switches over to the Nicholson Model CME-A "CoMBo" Steam Trap. Once the temperature reaches the desired 121°C, tank heat losses are minimal and the steady condensate maintenance load shown in the table below are maintained.

Tank Volume (Liter)	Peak Condensate heat-up Load lb/hr (kg/hr)	Condensate Maintenance Load Ib/hr (kg/hr)
40000	2500 (1134)	27 (12)
15000	1250 (567)	14 (6)
7200	400 (181)	7 (3)
3000	300 (136)	5 (2)
1500	200 (91)	3 (1.4)
600	100 (45)	2 (.9)
100	30 (14)	1 (.4)
20	15 (7)	0.5 (.2)

PEAK CONDENSATE LOADS


The high capacity of the CME-A makes it an excellent choice when a 3-way valve is not utilized. The Nicholson model CME-A can be used to pass Clean-In-Place Return (CIPR) as shown in the CME-A Piping Diagram. The Nicholson CME-A can pass 3608 #/Hr (1636 kg/hr) of 80°C condensate at 20 psi (1.4 bar) which exceeds the design peak condensate load of 2500#/Hr (1134 kg/hr) for all tank volumes shown above. The requirement to use multiple steam traps or a 3-way valve on the bottom of a sterilization tank depends on the time required to purge the air and condensate during the air purge cycle. The ball valve allows a faster purging of the condensate, but increases the sterilization time since it slows pressure build-up if steam is vented.


Thermostatic steam traps operate based on the difference in temperature of the condensate and the steam. The Nicholson Model CDS 204 steam trap, with the –B bellows is the most sensitive in the market 1°C (2-3°F) sub-cool. This means that SIP system temperatures can be set lower and control limits are tighter as shown in the graph below. This lower temperature reduces rouging and extends the life of components.

CoMBo TEMPERATURE CONTROL

Extensive testing with the CME-A CoMBo has shown that the condensate backup varies with the steam pressure and condensate load as shown in the chart below. High sensitivity in combination with the industry's highest capacity, means a minimum condensate leg is required above the trap to achieve the required cooling. The CoMBo maintains condensate below the temperature thermocouple for loads ranging from 1 to 27 lb/hr (0.4-12 kg/hr) which are encountered during SIP maintenance of vessels ranging from 20 liters to 40,000 liters respectively.

CME-W25 VERTICAL WELL

CME-A

CONDENSATE MEASURING ELBOW

APPLICATIONS

- CIP/SIP System Condensate Drainage
- Sterilization of Process Vessels
- Culinary Steam
- Humidifiers
- WFI System Sterilization
- Fermenter Sterilization

MODELS

- CME-A Direct Immersion RTD
- CME-W25 Well Installation RTD

OPTIONS

- MP Mechanical Polish to 10 µ in. Ra
- EP Electropolish
- SLR SLR Orifice
- Tef-Steel, PTFE, Teflon[®], E.P.D.M., USP Class VI & other gasket materials also available
- Horizontal or vertical inlet flow
- Horizontal or vertical well
- CME-A Direct immersion hygienic clamp RTD supplied by customer
- CME-W25 Well installation NPT RTD supplied by cutomer

APPLICABLE CODES

ASME BPE

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open to discharge air, non-condensibles and condensate. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow.

COMBO CONDENSATE MEASURING ELBOW THERMOSTATIC STEAM TRAP

Pressures to 40 PSIG (2.7 barg) Temperatures to 292°F (144°C)

SENSITIVITY – The –B bellows has been designed to achieve a 1°C (2-3°F) sub-cool. This is the most sensitive trap in the market place today. It maintains backup of condensate below 6" (150mm) for SIP maintenance of vessels sized 40,000 liters and below.

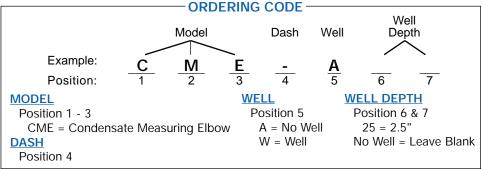
HIGH CAPACITY – These traps have 30-50% higher capacities than any competitor. This means they can often handle the peak condensate load encountered during vessel heat-up without requiring bypass through a three-way valve.

LONG LIFE – The one single moving part is a multi-plate bellows made of 316L Stainless Steel. The bellows have been tested to exceed 40,000,000 cycles.

UNIVERSAL INDUSTRY STANDARD GASKET – One gasket fits all Nicholson Sanitary Steam Traps. White Viton food grade gasket offers superior performance for higher pressure steam applications.

WATER HAMMER PROTECTION – Impingement plate protects the bellows and valve from hydraulic shock. This design allows self-centering alignment for superior valve-to-orifice sealing.

MODULATING FLOW DYNAMICS – Nicholson Sanitary Steam Traps use conical valves for better flow dynamics, consistent system temperature and pressure and longer life than ball bearing valves.


SELF DRAINING – Completely free draining with the steepest interior surfaces prevents puddling.

AIR VENTING – Thermostatic Bellows allow for superior and faster system start up.

SLR OPTION – Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

COST EFFICIENT – Eliminates clamp on top of CDS

SIMPLIFIED VALIDATION – Only one unit to validate, complete with all MTRs.

As condensate collects, it takes heat from the actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load. Sensitivity of bellows maintains condensate below thermal probe connection.

NICHOLSON

CoMBo CONDENSATE MEASURING ELBOW THERMOSTATIC STEAM TRAP

SPECIFICATION

Steam trap shall be of balanced pressure design with 316L welded bellows capable of releasing condensate within 1°C (2-3°F) of saturated pressure. All other interior wetted components shall be of 316L stainless. It shall have interior body finish of at least 20 μ in. (0.5 μ m) Ra and exterior body finish of at least 32 μ in. (0.75 μ m) Ra. Trap shall utilize hygienic body clamp allowing disassembly for inspection or cleaning and be entirely self draining. Trap end connections shall be standard hygienic clamp. Thermostatic actuator shall employ a conical valve lapped to the seat. Traps shall have SLR orifice where drainage at saturated temperatures is required. Traps shall be guaranteed against defects for 3 years. Trap shall maintain condensate below the temperature thermocouple for loads ranging from 1 to 27 lb/hr (0.4 to12 kg/hr) which are encountered during SIP maintenance of vessels ranging from 20 liters to 40,000 liters respectively.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure TMO: Max. Operating Temperature PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature 40 psig (2.7 barg) 292°F (144°C) 150 psig (10.3 barg) 366°F (186°C)

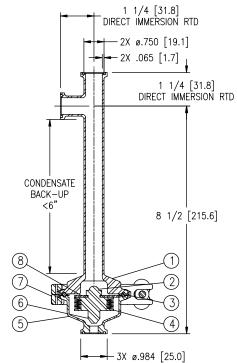
MATERIALS OF CONSTRUCTION

Part #	Part Name	Material
1	Condensate Elbow	ASME BPE 316L
2	Actuator Nut	
3	Body Gasket -B Bellows	Viton 3227
4	-B Bellows	316L
5	Body – Outlet	A276 316L
6	Valve	
7	Body Clamp	
8	Impingement Plate	
9	Well	316L
10	Well Gasket	
11	Well Clamp	

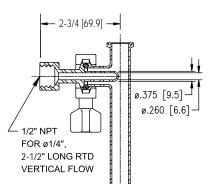
BODY SURFACE FINISH

Internal <20 μ in. (0.5 μ m) Ra SFCI.External <32 μ in. (0.75 μ m) Ra. Optional mechanical polishing to 10 μ in. (0.25 μ m) Ra and/or electropolish SFC4

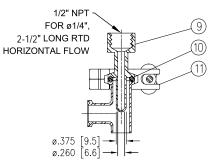
GASKET APPROVALS


FDA CFR Title 21 Part 177, USDA, USP Class VI, 3A Sanitary Standard, NSF

SERVICE NOTES


Trap is supplied with the -B Bellows to maintain condensate below the thermal probe. CME-W25 is designed to be self-draining with a horizontal inlet and vertical downward discharge.

MAXIMUM CAPACITY - lbs/hr (kg/hr)


Condensate	Orifice		Differential PSIG (bar)										
Temperature	Inches	5 (0.34)	10 (0.7)	20 (1.4)	30 (2.1)	40 (2.8)	50 (3.4)	60 (4.1)	70 (4.8)	80 (5.5)	90 (6.2)	100 (6.9)	
80°C Water										7114 (3226)			
5°C Subcool	5/16	1520 (689)	1671 (758)	1869 (848)	-			-	-	2946 (1336)		3159 (1433)	
1°C Subcool		682 (309)	775 (351)	861 (390)	975 (442)	1109 (503)	1172 (532)	1222 (554)	1291 (585)	1347 (611)	1426 (647)	1453 (659)	

CME-A Direct Immersion RTD 2.3 lbs

CME-W25 Vertical Flow 2.8 lbs

CME-W25 Horizontal Flow

Connections: 3/4" Hygienic Clamp

- CIP/SIP System Condensate Drainage
- Sterilization of Process Vessels
- Culinary Steam
- Humidifiers
- WFI System Sterilization
- Fermenter Sterilization

OPTIONS

- MP Mechanical Polish to 10 μ in. (0.25 μm) Ra
- EP Electropolish
- SLR SLR Orifice
- Tef-Steel, PTFE, Teflon®, E.P.D.M., USP Class VI & other gasket materials available
- -B Bellows for low subcool
- 6" Condensate Leg (CME-W25, CME-A)

APPLICABLE CODES

• ASME BPE

Canadian Registration # 0E0591.9

CDS SANITARY THERMOSTATIC STEAM TRAPS

Pressures to 100 PSIG (6.9 barg) Temperatures to 338°F (170°C)

Steepest Interior Surfaces—Designed to completely drain without puddling.

Stainless Steel Body—Body Material is 316L Stainless Steel with 20 μ in. (0.5 μ m) Ra internal finish and 32 μ in. (0.75 μ m) Ra external finish. Available with mechanical polishing to 10 μ in. (0.25 μ m) Ra and/or electropolish.

Self centering Valve—Leak tight shut off. Assembly of actuator and valve to impingement plate allows the valve to self align with center of the orifice.

Temperature Sensitive Actuator—One moving part. 316L Stainless Steel, fail open, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Directional Discharge—Erosion prevented by directing discharge to center of piping.

Maintenance—Can be easily removed and disassembled for sterilization and/or repair.

Three Year Guarantee—Guaranteed for three years against defects in material or workmanship.

Industry Standard Food Grade Gasket—White Viton food grade gasket offers superior performance for higher pressure steam applications.

Large Orifice Selection—Broad selection of orifice sizes provide greatest sizing and selection flexibility.

Superior Air Handling—Best air handling capability provides for fast startup.

Unique SLR Orifice OptionSpecify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

Bar Stock—Connectiion fittings are not welded onto inlet and outlet pieces.

MODELS

- CDS202–Low capacity
- CDS203–Medium capacity
- CDS204–High capacity

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

valve into seat orifice to prevent any further flow. As con-

densate collects, it takes heat from the actuator, lowering

internal pressure. Line pressure will then compress thermal

opening automatically adjusts to load conditions from mini-

actuator to open valve and discharge condensate. Valve

mum on very light loads to full lift at maximum load.

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open to discharge air, non-condensibles and condensate. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces

4

CDS SANITARY THERMOSTATIC STEAM TRAPS

SPECIFICATION

Steam trap shall be of balanced pressure design with 316L welded bellows capable of releasing condensate within 1°C (2-3°F) or 5°C (10°F) of saturated pressure. All other interior wetted components shall be of 316L stainless. It shall have interior body finish of at least 20 μ in. (0.5 μ m) Ra and exterior body finish of at least 32 μ in. (0.75 μ m) Ra. Trap shall utilize hygienic body clamp allowing disassembly for inspection or cleaning and be entirely self draining when installed in vertical configuration. Trap end connections shall be standard hygienic clamp. Thermostatic actuator shall employ a conical valve lapped to the seat. A minimum of three orifices shall be available. Traps shall have SLR orifice where drainage at saturated temperatures is required. Traps shall be guaranteed against defects for 3 years.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure TMO: Max. Operating Temperature PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature

100 psig (6.9 barg) 338°F (170°C) 150 psig (10.3 barg) 366°F (186°C)

BODY SURFACE FINISH

Internal <20 μ in. (0.5 μ m) Ra SFCI.External <32 μ in. (0.75 μ m) Ra. Optional mechanical polishing to 10 μ in. (0.25 μ m) Ra and/or electropolish SFC4

GASKET APPROVALS

FDA CFR Title 21 Part 177, USDA, USP Class VI, 3A Sanitary Standard, NSF

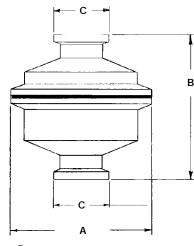
SERVICE NOTES

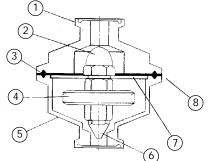
Trap is designed to be self draining for vertical installation (discharge down) 1/2" - 3/4" service trap should be installed with 3/4" inlet gasket. 1" - 11/2" service trap should be installed with 11/2" inlet gasket.

SLR ORIFICE OPTION

Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

POLISHING PROCEDURE


All surface finishes are achieved without the use of additional buffing, compounds or grit.


-B Bellows

1°C (2-3°F) subcool for sensitive applications under 40 psi (2.7 barg)

Maximum Capacity—lbs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)												
	Differential PSIG (bar)											
Тгар	Orifice Inches	3	10 (0.7)	20 (1.4)	30 (2.1)	40 (2.8)	50 (3.4)	60 (4.2)	70 (4.9)	80 (5.6)	90 (6.2)	100 (6.9)
CDS 202	5/32	291 (132)	411 (186)	581 (264)	719 (326)	831 (377)	919 (417)	1000 (454)	1075 (488)	1130 (513)	1174 (533)	1207 (547)
CDS 203	1/4	550 (249)	825 (374)	1210 (549)	1495 (678)	1750 (794)	1975 (896)	2175 (987)	2350 (1066)	2525 (1145)	2650 (1202)	2825 (1281)
CDS 204	5/16	1520 (689)	1671 (758)	1869 (848)	2128 (965)	2301 (1044)	2509 (1138)	2713 (1230)	2819 (1278)	2946 (1336)	3091 (1402)	3159 (1433)

For Kg/Hr Multiply by .454

Connections: 1/2" – 1½" Hygienic Clamp

DIMENSIONS inches (mm) and WEIGHTS pounds (kg)

Service	А	В	С	Weight
1/ and 3/	2½	2%	⁶³ /64	1.8
½ and ¾	(63)	(67)	(25)	(.8)
1 and 11/	2½	2⁵⁄ଃ	1 ⁶³ ⁄64	2.3
1 and 1½	(63)	(67)	(50)	(1.0)

MATERIALS OF CONSTRUCTION							
Item	Part Name	Material					
1	Body – Inlet	316L A276					
2	Actuator Nut	316L					
3	Gasket	Viton 3227					
4	Actuator	316L					
5	Body – Outlet	316L A276					
6	Valve	316L					
7	Clamp (not shown)	304					
8	Impingement Plate	316L					

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

- CIP/SIP System Condensate Drainage
- Sterilization of Process Vessels
- Culinary Steam
- Humidifiers
- WFI System Sterilization
- Fermenter Sterilization

OPTIONS

- MP Mechanical Polish to 10 µ in. (0.25 µm) Ra
- EP Electropolish
- SLR SLR Orifice
- Tef-Steel, PTFE, Teflon[®], E.P.D.M., and other gasket materials available

APPLICABLE CODES

• ASME BPE

Canadian Registration # 0E0591.9C

CDH SANITARY THERMOSTATIC STEAM TRAPS

Pressures To 100 PSIG (6.9 barg) Temperatures to 338°F (170°C)

Universally Configurable—Horizontal connections from any direction on standard model; AI and AO models feature one multi-directional horizontal and one vertical connection.

Steepest Interior Surfaces—Designed to completely drain without puddling, even in significantly sloped lines.

Stainless Steel Body—Body Material is 316L Stainless Steel with 20 μ in. (0.5 μ m) Ra internal finish and 32 μ in. (0.75 μ m) Ra external finish. Available with mechanical polishing to 10 μ in. (0.25 μ m) Ra and/or electropolish.

Self centering Valve—Leak tight shut off. Assembly of actuator and valve to impingement plate allows the valve to self align with center of the orifice.

Temperature Sensitive Actuator—One moving part. 316L Stainless Steel, fail open, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

One Size Suits Most Services—Universal hygienic clamp fits both 1/2" and 3/4" piping.

Maintenance—Can be easily removed and disassembled for sterilization and/or repair.

Four Year Guarantee—Guaranteed for four years against defects in material or workmanship.

Inventory Standard Food Grade Gasket—White Viton food grade gasket offers superior performance for higher pressure steam applications.

Superior Air Handling—Best air handling capability provides for fast startup.

Unique SLR Orifice Option—Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

Bar Stock—Connectiion fittings are not welded onto inlet and outlet pieces.

MODELS

- CDH-AI-AO–Horizontal inlet and outlet
- CDH-AI–Horizontal inlet, vertical outlet
- CDH-AO-Vertical inlet, horizontal outlet

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open to discharge air, non-condensibles and condensate. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from the actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load.

OPERATION

CDH SANITARY THERMOSTATIC STEAM TRAPS

SPECIFICATION

Steam trap shall be of balanced pressure design with 316L welded bellows capable of releasing condensate within 5°C (10°F) of saturated pressure. All other interior wetted components shall be of 316L stainless. It shall have interior body finish of at least 20 μ in. (0.5 μ m) Ra and exterior body finish of at least 32 μ in. (0.75 μ m) Ra. Trap shall utilize hygienic body clamp allowing disassembly for inspection or cleaning and be entirely self draining in horizontal or angle piping configuration. Trap end connections shall be standard hygienic clamp. Thermostatic actuator shall employ a conical valve lapped to the seat. Traps shall have SLR orifice where drainage at saturated temperatures is required. Traps shall be guaranteed against defects for four years.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure TMO: Max. Operating Temperature PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature

100 psig (6.9 barg) 338°F (170°C) 150 psig (10.3 barg) 366°F (186°C)

MATERIALS OF CONSTRUCTION

Part #	Part Name	Material
1	Body – Inlet	A276 316L
2	Clamp	
3	Gasket	Viton 3227
4	Body – Outlet	A276 316L
5	Actuator Nut	316L
6	Impingement Plate	316L
7	Actuator	
8	Valve	316L

CONNECTION

Sanitary Ferrule accommodates 1/2" and 3/4" service

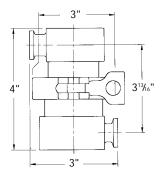
BODY SURFACE FINISH:

Internal <20 μ in. (0.5 μ m) Ra SFCI.External <32 μ in. (0.75 μ m) Ra. Optional mechanical polishing to 10 μ in. (0.25 μ m) Ra and/or electropolish SFC4

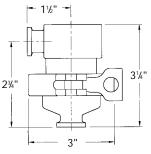
GASKET APPROVALS:

FDA, USDA, USP Class VI, 3A Sanitary Standard, NSF

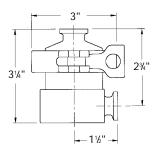
SLR ORIFICE OPTION

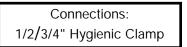

Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

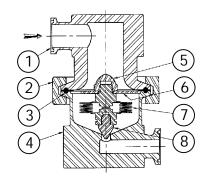
POLISHING PROCEDURE


All surface finishes are achieved without the use of additional buffing, compounds or grit.

Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation												
	Differential PSIG (bar)											
Trap Orifice 5 10 20 30 40 50 60 70 80 9									90	100		
	Inches	(0.34)	(0.7)	(1.4)	(2.1)	(2.8)	(3.4)	(4.2)	(4.9)	(5.6)	(6.2)	(6.9)
CDU	1/4	550	825	1210	1495	1750	1975	2175	2350	2525	2650	2825
CDH	1/4	(249)	(374)	(549)	(678)	(794)	(896)	(987)	(1066)	(1145)	(1202)	(1281)


For Kg/Hr Multiply by .454


CDH-AI-AO - 3.9 LB.(1.8 kg)



CDH-AI - 2.6 LB. (1.2 kg)

CDH-AO - 3.1 LB. (1.4 kg)

U.S. PATENT NO. 6,220,519

- CIP/SIP System Condensate Drainage
- Sterilization of Process Vessels
- Culinary Steam
- Humidifiers
- WFI System Sterilization
- Main Drips

APPLICABLE CODES

• ASME BPE

Canadian Registration # 0E0591.9C

DS100/DS110 THERMOSTATIC STEAM TRAPS

Pressures To 150 PSIG (10.3 barg) Temperatures to 366°F (186°C)

Stainless Steel Body—Body materials of all models are Type 316L Stainless Steel.

Self Centering Valve—Leak tight shut off. Assembly of actuator and valve to impingement plate allows valve to self-align with center of valve seat orifice. Provides long lasting valve and seat.

Temperature Sensitive Actuator—316L Stainless welded actuator for maximum corrosion, thermal and hydraulic shock resistance. One moving part.

Thermal and Hydraulic Shock Resistant—Impingement plate plus welded construction prevents damage to actuator.

Long Life Valve and Seat—Stainless steel valve and seat matched together for water tight seal.

Maintenance—All models are sealed and maintenance free.

Directional Discharge—Erosion prevented by directing discharge into the center of pipe or tubing.

Best Air Handling Capacity—Fast start up and operation.

Fast Response—Quickly adjusts to condensate load or temperature changes.

One Size Suits Most Services—Universal hygienic clamp fits both 1/2" and 3/4" piping.

Two Year Guarantee—Trap guaranteed for two years against defects in material or workmanship.

MODELS

- DS100-Hygienic Clamp end 1%" OAL
- DS100TE-Tube end
- DS110–Hygienic Clamp end 2%" OAL

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

OPERATION

Thermal actuator is filled at its free length with a liquid having a lower boiling point than water. On start-up, valve is normally open to discharge air, non-condensibles and condensate. When steam enters trap, thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. As condensate collects, it takes heat from thermal actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge condensate. Valve opening automatically adjusts to load conditions from minimum on very light loads to full lift at maximum load.

DS100/DS110 THERMOSTATIC STEAM TRAPS

SPECIFICATION

Steam trap shall be thermostatically actuated and maintenance free. Actuator shall be of single piece, fail open design consisting of 1.2" diameter, welded 316L stainless plates capable of releasing condensate within 5°C (10°F) of saturated pressure. Trap shall be constructed entirely of 316L stainless steel components with wetted body surfaces finished to 20 μ inch (0.5 μ m) Ra or better. Trap shall be self draining when installed vertically in piping systems. Trap shall have tube or universal hygienic clamps. Ferruled connections shall be Tri-clamp compatible and designed to fit both 1/2" and 3/4" service. Trap shall be guaranteed against defects for 2 years.

MAXIMUM OPERATING CONDITIONS

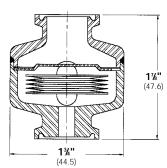
PMO: Max. Operating Pressure	150 psig	(10.3 barg)
TMO: Max. Operating Temperature	366°F	(170°C)
PMA: Max. Allowable Pressure	300 psig*	(20.7 barg)
TMA: Max. Allowable Temperature	500°F*	(260°C)
*May be limited by rating of utilized end connection.		

MATERIALS OF CONSTRUCTION

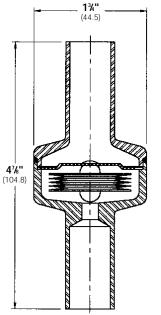
Body- Inlet	
Actuator	
Body – Outlet	
Valve	

BODY SURFACE FINISH

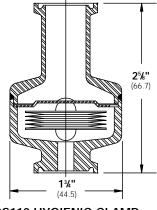
Internal <20 μ in. (0.5 μ m) Ra SFCI.External <32 μ in. (0.75 μ m) Ra. Optional mechanical polishing to 10 μ in. (0.25 μ m) Ra and/or electropolish SFC4


SERVICE NOTES

Trap is designed to be self draining for vertical installation (discharge down). 1/2" - 3/4" ferrule service trap should be installed with 3/4" inlet gasket.


SLR ORIFICE OPTION

Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.


Maxim	Maximum Capacity—Ibs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)														
			Differential PSIG (bar)												
Trap	Orifice	5	10	20	30	40	50	60	70	80	90	100	125	150	
	Inches	(0.34)	(0.7)	(1.4)	(2.1)	(2.8)	(3.4)	(4.2)	(4.9)	(5.6)	(6.2)	(6.9)	(8.62)	(10.3)	
DC100	1/4	550	825	1210	1495	1750	1975	2175	2350	2525	2650	2825	3140	3425	
DS100	1/4	(249)	(374)	(549)	(678)	(794)	(896)	(987)	(1066)	(1145)	(1202)	(1281)	(1424)	(1554)	

DS100 HYGIENIC CLAMP CONNECTION 1/2" & 3/4" Weight .4 lbs (0.18)

DS100TE TUBE CONNECTION (1/2" & 3/4") Weight .4 lbs (0.18)

DS110 HYGIENIC CLAMP CONNECTION (1/2" & 3/4") Weight .4 lbs (0.18)

Conneo	ctions: 1/2" - 3/4" Tube
1/2" /	ctions: 1/2" – 3/4" Tube ' 3/4" Hygienic Clamp

- Platen Presses
- Plating Tanks
- Sterilizers
- Tire Presses
- Cooking Equipment
- Laundry Equipment
- Other Process Equipment

OPTION

-B Bellows for low subcool

Canadian Registration # OE0591.9C

DS200 SERIES THERMOSTATIC STEAM TRAPS

Pressures To 100 PSIG (6.9 barg) Temperatures to 338°F (170°C)

Stainless Steel Body—Body materials are Type 316L Stainless Steel.

Self Centering Valve—Leak tight shut off. Assembly of actuator and valve to impingement plate allows valve to self-align with center of valve seat orifice. Provides long lasting valve and seat.

Temperature Sensitive Actuator—One moving part. Inconel welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Thermal and Hydraulic Shock Resistant—Impingement plate plus welded construction prevents damage to actuator.

Valve and Seat—Long life, stainless steel valve and seat lapped and matched together for water tight seal.

Maintenance—All models are sealed and maintenance free.

Three Year Guarantee—Trap guaranteed for three years against defects in material or workmanship.

Additional Features—Best air handling capability for fast start up and operation. Fastest response to condensate load or temperature changes. Broad application range. Selection of orifice and pipe sizes meet majority of condensate removal demands in deionized steam systems.

Unique SLR Orifice Option—Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

MODELS

- DS202–Low capacity
- DS203–Medium capacity
- DS204–High capacity

OPERATION

Thermal actuator is filled at it's free length with a liquid having a lower boiling point than water. As assembled, valve is normally open. On startup, air passes through vent.As air is eliminated, hot steam reaches vent and the thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. Should more air collect, it takes heat from the actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge air. Valve lift automatically adjusts to variations.

DS200 SERIES THERMOSTATIC STEAM TRAPS

SPECIFICATION

Steam trap shall be of balanced pressure design with 316L welded bellows capable of releasing condensate within 5°C (10°F) of saturated pressure. Where drainage at saturated temperatures is required, trap shall have SLR orifice. All other components shall be of 316 or 316L stainless steel. Trap shall be self draining and normally open.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	100 psig	(6.9 barg)
TMO: Max. Operating Temperature	338°F	(170°C)
PMA: Max. Allowable Pressure	150 psig	(10.3 barg)
TMA: Max. Allowable Temperature	366°F	(186°C)

MATERIALS OF CONSTRUCTION

Body	ASTM A351 Grade CF3M (316L)
Welded Actuator	
Valve & Seat	

SLR ORIFICE OPTION

Specify when immediate elimination of condensate and improved sensitivity is desired. An orifice on the valve allows for continuous discharge of condensate. Trap will nominally pass 50 lb/hr (22.7 kg/hr) of condensate at 50 psi (3.4 barg) within 0.5°C (1°F) of saturated temperature.

-B Bellows

1°C (2-3°F) subcool for sensitive applications under 40 psi (2.7 barg)

	A	
B		
	3/8" - 3/4" BODY	

	•••••	 -

Connections:	
3/8" – 3/4" NPT or socketweld	

DIMENSIONS inches (mm) and WEIGHTS pounds (kg)

NPT or Socket Weld	А	В	Weight
¾ and ½	3 ¾	1¾	1.1
	(95)	(44)	(0.5)
3/4	3 ¹⁵ %6	1¾	1.2
	(100)	(44)	(0.54)

Maximum Capacity—lbs/hr 10°F Below Saturation (Kg/hr 5°C Below Saturation)															
Trap	Orifice						Diffe	rential	PSIG (b	ar)					
пар	Inch	5	10	20	50	100	125	150	200	250	300	350	400	450	500
	(mm)	(0.34)	(0.7)	(1.4)	(3.5)	(6.9)	(8.6)	(10.3)	(13.8)	(17.2)	(20.7)	(24.1)	(27.6)	(31.0)	(34.5)
DS202	1/8	216	265	375	592	778	838	890	980	1055	1121	1180	1235	1284	1323
	(3)	(98)	(120)	(170)	(269)	(354)	(381)	(405)	(445)	(480)	(510)	(536)	(561)	(584)	(601)
DS203	1/4	550	825	1210	1975	2825	3140	3425	3650	3960	4100	4230	4420	4600	4760
	(6)	(249)	(374)	(549)	(896)	(1281)	(1424)	(1554)	(1656)	(1796)	(1860)	(1919)	(2005)	(2086)	(2161)
DS204	5/16	860	1220	1725	2725	3575	3850	4090	4505	4850	5155	5425	5675	5900	6110
	(8)	(390)	(554)	(783)	(1237)	(1623)	(1748)	(1857)	(2045)	(2202)	(2340)	(2463)	(2576)	(2679)	(2774)

- Steam Tracing
- Drip Leg
- Heating
- Sanitary Applications

SANITIZER NTD 230L SERIES SANITARY THERMODYNAMIC STEAM TRAPS

Pressures To 150 PSIG (10.3 barg) Temperatures to 850°F (454°C)

Sanitary — 316L stainless steel bar stock body, disc and cap, with surface finishes better than 32m in. Ra, prevent contamination and rouging.

Compact Design — Stainless steel disc is the only moving part.

Inexpensive — Low initial cost is less expensive than repairable technologies.

Simplifies Installation — Works in any position.

Rugged — Handles water hammer and superheat.

Reliable, **Efficient Operation** — Blast discharge quickly draws condensate and helps maintain system temperature.

Freeze resistant — Self draining design with vertical install drain prevents freezing.

All 316L Stainless Steel Construction — Resists both internal and external corrosion.

Easy to Monitor — Audible discharge cycle makes checking operation simple.

MODELS

• NTD 230L–Sanitizer Thermodynamic Steam Trap

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

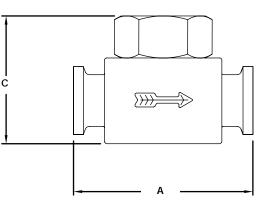
OPERATION

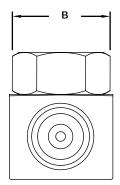
Incoming air and condensate flow through the trap body and into the control chamber. Line pressure raises the disc off the seat, allowing complete discharge. When flashing condensate enters the cartridge, flow velocity increases, creating low pressure underneath the disc. Flashing condensate at high velocity strikes the inside wall of the disc chamber and is deflected to the top of the disc, causing a pressure buildup. The disc is forced down onto the seat by this pressure imbalance. The trap remains closed as flashed vapor in the control chamber keeps the disc seated. Pressure inside the cap is not lowered until the trapped flash vapor condenses due to body radiation. Condensing steam lowers the pressure above the disc. Disc is then lifted and the cycle repeated.

SANITIZER NTD 230L SERIES SANITARY THERMODYNAMIC STEAM TRAPS SPECIFICATION

Steam Trap shall be of the thermodynamic design. Body shall be of 316L stainless steel construction. Surface finishes shall exceed 32 μ in. (0.75 μ m) grade. Trap body shall contain an integral seat. Cover shall seal to body without gaskets or seals. Trap shall be suitable for pressures through 150 PSI (10.3 barg). Trap end connections shall be hygienic clamp and accommodate mating connection sizes of 1/2 and 3/4 inch. Trap shall function installed in any pipe configuration.

MAXIMUM OPERATING CONDITIONS


PMO: Max. Operating Pressure	150 psig (10.3 barg)
TMO: Max. Operating Temperature	850°F (454°C)
PMA: Max. Allowable Pressure	230 psig (15.9 barg)
TMA: Max. Allowable Temperature	850°F (454°C)


MATERIALS OF CONSTRUCTION

Body	.316L	Stainless Steel Bar Stock
Disc	.316L	Stainless Steel Bar Stock
Cover	.316L	Stainless Steel Bar Stock

Maximum Capacity — lbs/hr (10°F Below Saturation)								
	Differential PSIG (barg)							
Orifice	5 10 20 50 100 125 150 (0.34) (0.7) (1.4) (3.4) (6.9) (8.6) (10.3)							
0.141	215	236	264	345	447	486	521	

For Kg/Hr Multiply by .454

Connections: 1/2" / 3/4"	
Hygienic Clamp	

DIMENSIONS inches (mm) and WEIGHTS pounds (kg)

Α	В	С	Weight
2%	1½	2	1.31
(66)	(38)	(51)	(0.59)

STEAM SCRUBBER FILTER

APPLICATION DATA

- Culinary Grade Steam
- Sterilizers
- Autoclaves
- Pharmaceutical & Biotechnology Process Equipment
- Clean Room Humidification
- Chemical Industry
- Electronic Industry
- Plastic Industry

OPTIONS

- 316L Housing
- Silicone, Viton or Buna N Gaskets
- Flange or Welded Ends
- 4" to 8" with ANSI Flanged End

Canadian Registration #OE8186.8O

REQUIRES DRIP TRAP. COMBINE WITH DS200 TRAP FOR MOST CLEAN STEAM APPLICATIONS

DS200 TRAP ON PAGE 10

STAINLESS STEEL FILTER

SIZES 1/2" to 3" PRESSURES to 145 PSIG at 353°F

- 1 and 5 Micron Filters—meet or exceed FDA guidelines and comply with 3A
- **304 Stainless Steel Housing**—Electropolished and Passivated

Double O-ring EPDM Housing Gasket

Inline NPT Connections

Single Clamp Closure

Sintered 316 Stainless Steel Filter Media

Porosity Level—greater than 50%

Filter Media—in 1, 5 or 25 Micron Absolute Ratings

Filter Element Endcaps—304 Stainless Steel

Renewable Filter Media

Single Open End Filter Media

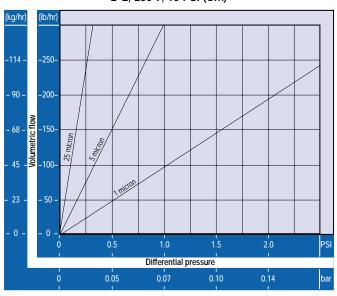
MODELS

- SS2L-2" low capacity
- SS3L-3" low capacity
- SS12-1/2" standard capacity
- SS34-3/4" standard capacity
- **SS1**–1" standard capacity
- SS114-11/4" standard capacity
- SS112-11/2" standard capacity
- SS2–2" standard capacity
- SS212-21/2" standard capacity
- SS3-3" standard capacity

NOTE: Please specify if Material Test Reports (MTR) or Certificates of Conformance (COC) are required.

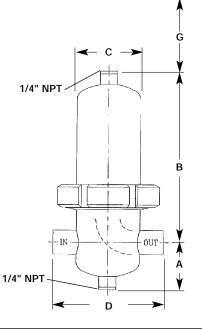
STEAM SCRUBBER STAINLESS STEEL FILTER

SPECIFICATION


Furnish and install as shown on the plans, high efficiency, inline horizontal, filter for air, steam or gas constructed with 304 or 316L stainless steel housing and single, open ended element. Filter shall have an absolute rating of 1, 5 or 25 microns and utilize double o-ring gaskets to reduce potential downstream leakage of unfiltered medium. External surface finish of filter housing shall be no less than 180 grit (25-35 Ra microinch) and joined utilizing a single clamp. Filter media shall be of sintered 316L stainless steel and be regenerable. 1 and 5 micron media shall conform to 3A sanitary standards for production of culinary steam and be USDA accepted. Connections shall be NPT, flanged ANSI 150 or welded.

MAXIMUM OPERATING CONDITIONS*

PMO: Max. Operating Pressure	145 psig (10 barg) Limit for Saturated Steam 125 psig (8.6 barg)
TMO: Max. Operating Temperature	353°F (178°C)
PMA: Max. Allowable Pressure	232 psig / 0-400°F (16 barg / 0-204°C)
TMA: Max. Allowable Temperature	400°F / 0-232 psig (204°C / 0-16 barg)
*For differential pressures greater than 75 psig	, consult factory.


MATERIALS OF CONSTRUCTION

Body, Standard Body, Optional	
Clamp	
Plug	
Gasket, Standard	EPDM
Gasket, Optional	Silicone
Gasket, Optional	Viton
Gasket, Optional	Buna N
Filter Media	Sintered 316L Stainless Steel
Filter End Caps	

Saturated Steam Capacity 2"L, 250°F, 15 PSI (Cm)*

Connections:	
1/2" – 3" NPT, Flanged or Welded	

DIMENSIONS inches (mm) and WEIGHTS pounds (kg)

Size	А	В	С	D	G	Weight	Conversion Factors (Cs)
1/2	2 ¹ / ₈	7 ³ /8	2 ³ / ₄	4 ¹ / ₈	3 ³ / ₄	4.2	0.17
(15)	(55)	(188)	(70)	(108)	(95)	(1.9)	
³ / ₄	2 ¹ / ₈	8 ³ / ₈	2 ³ / ₄	4 ⁷ / ₈	6	4.4	0.25
(20)	(55)	(211)	(70)	(125)	(152)	(2.0)	
1	2 ⁷ /8	8 ⁵ /8	3 ³ /8	4 ⁷ /8	6	5.7	0.39
(25)	(74)	(219)	(85)	(125)	(152)	(2.6)	
1 ¹ / ₄	2 ⁷ / ₈	10 ⁵ /8	3 ³ /8	5 ¹ / ₂	8	6.6	0.50
(32)	(74)	(270)	(85)	(140)	(203)	(3)	
1 ¹ / ₂	3 ³ / ₄	11 ¹ / ₂	4 ¹ / ₈	6 ⁵ /8	8	10.1	0.67
(40)	(94)	(292)	(104)	(170)	(203)	(4.6)	
2L*	3 ³ / ₄	14 ³ / ₈	4 ¹ / ₈	6 ⁵ /8	11	10.6	1.00
(50)	(94)	(366)	(104)	(170)	(279)	(4.8)	
2	3 ³ / ₄	19 ³ / ₈	4 ¹ / ₈	6 ⁵ /8	17 ³ / ₄	11.7	1.50
(50)	(94)	(493)	(104)	(170)	(451)	(5.3)	
2 ¹ / ₂	4 ¹ / ₄	24 ⁵ /8	5 ¹ /8	8 ¹ / ₂	23	19.8	2.00
(65)	(106)	(626)	(129)	(216)	(584)	(9)	
3L*	4 ¹ / ₄	34 5/8	5 ¹ /8	8 ¹ / ₂	33 ¹ / ₂	23.8	2.70
(80)	(106)	(881)	(129)	(216)	(851)	(10.8)	
3	4 ⁵ / ₈	35 ³ / ₄	6	9 ³ / ₈	33 ¹ / ₂	35.6	4.00
(80)	(119)	(907)	(152)	(240)	(851)	(16.2)	

SELECTION EXAMPLE

For optimum service life, the filter should have a 1 psi maximum pressure drop. Select a 5 micron filter for a flow rate of 110 lbs/hr (w) of saturated steam at 45 psi.

Where:
$$Cs = \frac{W}{CmCp}$$

Designing for .75 PSI differential pressure, Cm is 225 from the capacity chart and Cp is 2.0.

Therefore: $Cs = \frac{110}{(225)(2.0)} = .24$ so 3/4" should be used.

Stear	Steam Pressure Conversion Factors (Cp)											
Channe	Decours	PSI	0	15	30	45	60	75	90	105	120	135
Steam	Pressure	bar	0	1	2	3	4	5	6	7	8	9
Conver	Conversion factor				1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0

SANITARY STEAM TRAP SUMMARY

SUMMARY	СоМВо	CDS	CDH	DS100/DS110	NTD230L	DS200
SIZES (Inches)	1/2, 3/4	1/2, 3/4, 1, 1½	1/2, 3/4	1/2, 3/4	1/2, 3/4	3/8, 1/2, 3/4
MAXIMUM PRESSURE (PSI)	40	100	100	150	150	100
CLEANABLE	YES	YES	YES	NO	YES	NO
INTERNAL FINISH	< 20 µ ln.	< 20 µ ln.	< 20 µ In.	< 20 µ In.	< 32 µ ln.	125
CONNECTIONS	HYGIENIC CLAMP	HYGIENIC CLAMP	HYGIENIC CLAMP	HYGIENIC CLAMP	HYGIENIC CLAMP & TUBE	NPT
FLOW	VERTICAL & HORIZONTAL	VERTICAL	HORIZONTAL	VERTICAL	HORIZONTAL	VERTICAL
FREE DRAINING	YES	YES	YES	YES	NO	NO
ASME BPE COMPLIANT	YES	YES	YES	YES	NO	NO
	SLR	SLR	SLR			
OPTIONS	MECHANICAL POLISH	MECHANICAL POLISH	MECHANICAL POLISH	SLR		SLR
	ELECTRO- POLISH	ELECTRO- POLISH	ELECTRO- POLISH	JLI		JEN
		-B BELLOWS				-B BELLOWS

All traps are exclusively 316L

- Clean steam systems utilizing deionized steam
- In-line sterilization of liquid storage tanks and distribution equipment
- Cleaning and sterilizing process piping systems
- Powering sterilizers and autoclaves

Canadian Registration # 0C0591.9

TYPE D50 STAINLESS STEEL STEAM PRESSURE REDUCING VALVE

Pressures To 300 PSIG (21 barg) Temperatures to 420°F (216°C)

Tight Shutoff—Spherical seating surface on floating stainless steel disc ensures ANSI/FCI 70-2 Class IV Shutoff.

Unique Adjustable Aspirator—Allows valve to be adjusted to suit service requirements.

Three Spring Ranges—Provide for wide range of controlled pressures.

External Adjusting Screw—Allows for quick, accurate change of reduced pressure set point.

High Grade Stainless Steel Spring—Accommodates wide range of adjustment without dangerous spring overload.

Large Area Diaphragm—Assures high sensitivity and accurate control.

External Body Cap—Provides easy access to internal screen for cleaning.

MODELS

D50SS–Stainless Steel D50

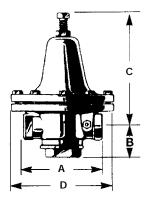
OPERATION

Regulator is actuated by changes in the downstream pressure. Any increase in the downstream pressure above the set point (due to decreased fluid demand) will force the diaphragm up and overcome the resistance of the spring, allowing the valve to close. Any decrease in the downstream pressure (due to an increased fluid demand) will decrease the pressure on the diaphragm and permit the spring to open the valve.

TYPE D50 STAINLESS STEEL STEAM PRESSURE REDUCING VALVE SPECIFICATION

Valve shall be self operated, requiring no external energy source. Valve shall operate quickly and provide dead end shutoff. Valve shall have a stainless steel body and be rated 300 psi at 420°F. Valve trim material shall be stainless steel. Valve shall have a standard aspirator to allow for adjustment of operation.

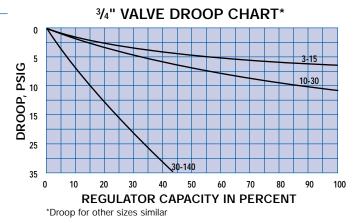
MAXIMUM OPERATING CONDITIONS


PMO: Max. Operating Pressure TMO: Max. Operating Temperature	(20.7 barg) (216°C)
PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature	(20.7 barg) (216°C)

MATERIALS OF CONSTRUCTION

Body	ASTM 743 CF-8M
Stem	
Disc	
Seat	
Gasket	Teflon
Diaphrag	m
Spring	

SPRING RANGES


3-15 psig 10-30 psig 30-140 psig

Connections: 1/2" – 1" Screwed

Dimensions									
Size	D	Dimensions, Inches (mm)							
	А	A B C D							
1/2" (13)	5 (127)	1 5/8 (41)	5 ¹ /2 (140)	4 ⁷ / ₈ (124)	8 (3.6)				
³ /4", 1 " (19, 25)	5 ⁵ /8 (143)	2 ¹ / ₄ (57)	6 ¹ / ₂ (165)	7 ⁷ / ₁₆ (191)	22 (10)				

Dated Flow	VA	LVE SIZ	Έ
Rated Flow	1/2"	³ /4"	1"
Coefficients (Cv)	2.2	3.3	4.9

Rated Steam Capacity Tables (lbs./hr)																									
PSI IN	10	20	30	40	50	75	100	125	150	175	200	250	60	75	85	100	125	150	175	200	250				
PSI OUT	5	10	10	30	30	30	30	30	30	30	30	30	50	50	50	50	50	50	50	50	50				
1/2"	41	68	100	87	130	200	255	315	370	425	480	595	115	190	230	280	340	405	465	525	650				
3/4"	59	97	145	125	185	290	370	450	530	615	695	855	165	275	335	410	500	590	675	765	945				
1"	80	130	195	170	250	390	495	605	715	825	930	1150	250	420	510	625	760	895	1030	1170	1440				
PSI IN	85	100	125	150	175	200	225	250	110	125	150	200	225	250	135	150	175	200	225	250	160	175	200	225	250
PSI OUT	75	75	75	75	75	75	75	75	100	100	100	100	100	100	125	125	125	125	125	125	140	140	140	140	140
1/2"	130	215	325	405	465	525	585	650	190	310	460	675	755	830	210	340	500	635	755	830	315	425	580	710	835
3/4"	190	315	470	590	675	765	855	945	310	500	745	1095	1220	1350	340	550	810	1030	1230	1350	510	690	940	1150	1350
1"	290	480	720	895	1030	1170	1300	1440	380	620	920	1350	1510	1670	420	680	995	1270	1510	1670	630	855	1160	1420	1670

Applications

- Collection of condensate
- Where electrical service is unavailable
- Submerged or remote sumps and manholes
- Hazardous fluids and process fluids
- Low pressure and vacuum systems
- High back pressure systems
- High capacity process applications

Condensate Commander Pump

Pressures to 250 PSIG (17.2 barg) Temperatures to 650°F (343°C)

Inlet Supply and Vent Valves

Lapped valves and seats for tight shutoff

Stainless steel construction resists corrosion

Floating ball design and hardened sealing surface of supply valve provide long service life

> Floating disk and ball valves feature an infinite number of seating surfaces

> > Self centering design assures reliable performance

Cycle Counter

accurately depicts number of cycles and assists in maintenance scheduling

Retrofit Mechanism Available

Head assembly fits many manufacturer's tanks

ASME Code Stamped Tank

Fabricated steel tank is standard on most models

Warrantied 3 Years or One Million Cycles Longest warranty in the industry

Unique Patented Single Spring Mechanism

Eliminates pump breakdown due to spring failure

Snap acting mechanism actuates the valve

Heavy duty spring operating in compression carries lifetime warranty

Unaffected by turbulence

Stainless steel construction maximizes reliability and service life

Valve and linkage positioning above condensate level minimizes corrosion

Condensate Recovery

NICHOLSON 's broad range of Commander Series Pressure Actuated Pumps are recognized for their quality, durability and versatility. Skid systems, fabricated to meet customer requirements, are a value added specialty that differentiate **NICHOLSON** 's products from the competitors.

Collection of Condensate

- Remote Locations such as tank farms
- Low pressure and vacuum systems
- Condensate systems with high back pressure
- High capacity process applications such as heat exchangers

Electrical Service is Unavailable or Prohibited

- Remote locations
- Hazardous locations

Submerged Areas

- Sumps or low lying areas
- Manholes

Hazardous Fluids

 Process fluids that may be difficult for conventional electric pump technology to handle

OPTIONS

- Glass Water Gage
- Cycle Counter
- Bronze or Stainless Steel Check Valves
- Insulating Jacket
- Supply Pressure Regulator
- Stainless Steel Tanks
- High Temperature
- High Pressure

CONDENSATE COMMANDER PUMP

Pressures To 250 PSIG (17.2 barg) Temperatures to 650°F (343°C)

No Electricity Needed

- -Uses pressurized gas or steam as the pumping force.
- -Preferable for remote or hazardous locations.

Lifetime Warranty on Spring

- -Single spring mechanism operates in compression only to assure long service life
- -Stainless steel snap action mechanism in continuous compression offers superior performance.

Rugged Mechanism

- -Unaffected by turbulence.
- -No adjustments or maintenance necessary.

Superior Valve Technology

- -Supply and exhaust valves are lapped for tight shutoff.
- -Self centering design assures reliable performance.
- -Unique floating ball design and hardened sealing surface of the supply valve provide long service life.

Suitable for a Wide Variety of Liquids

- -Condensate from steam systems.
- -High back pressure, low pressure and vacuum systems.
- -Ideal in a sump or other submersible applications.
- -Suitable for acids and other process fluids that may be incompatible with conventional pumps.

Warantied 3 Years or One Million Cycles

- Longest warranty in the industry.

ASME Code Stamped Tank

- -Fabricated steel tank is standard on most models. Retrofit Mechanism Available
- -Head assembly can fit other manufacturer's tanks. Required suction head is minimal
- -Optimal performance achieved at only 12 inches.

MODELS

- Classic–Standard capacity, vertical tank
- Big Boy-Super capacity, horizontal tank
- Horizontal–Standard capacity, high pressure, horizontal tank
- Little Boy-Reduced capacity, vertical tank
- Skid–Standard or custom multiplex configurations

OPERATION

The vent valve is open, the pressure supply valve is closed and the float is positioned in the lower part of the tank as the condensate or other liquid enters the tank through the inlet check valve. As the tank fills with liquid, the float rises to the point where the spring mechanism snaps past the center position. The compressed spring instantly closes the vent valve and opens the pressure supply. This allows pressure into the tank which forces the liquid through the outlet check valve.

As the liquid level falls, the float lowers to the point where the spring mechanism snaps past the center position which immediately closes the pressure supply valve and opens the vent valve. The pressure in the tank decreases, allowing liquid to flow through the inlet check valve, repeating the cycle.

CONDENSATE COMMANDER CLASSIC PUMP

SPECIFICATION

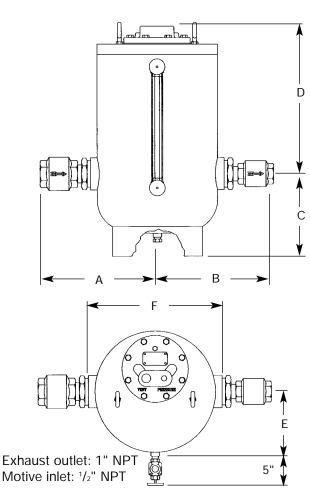
Pump shall be a pressure vessel drainer operated by steam, compressed air or other pressurized gas to 200 psig. Body shall be fabricated steel ASME code to 200 psi. Pump mechanism shall be all stainless steel without external packing or seals. Mechanism shall employ one spring operating in continuous compression. Spring shall be warrantied for the life of the unit. When required, unit shall be equipped with an external cycle counter, sight glass and insulating jacket.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	200 psig	(13.8 barg)
TMO: Max. Operating Temperature	400°F	(204°C)
PMA: Max. Allowable Pressure	200 psig	(13.8 barg)
TMA: Max. Allowable Temperature	400°F	(204°C)

With optional Temperature/Pressure upgrades:

PMO: Max. Operating Pressure	250 psig	(17.2 barg)
TMO: Max. Operating Temperature	650°F	(343°C)
PMA: Max. Allowable Pressure	250 psig	(17.2 barg)
TMA: Max. Allowable Temperature	650°F	(343°C)


MATERIALS OF CONSTRUCTION

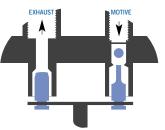
Tank Weldment	Steel
Trip Mechanism w/Flange	DI/StI/SS
Gasket	Graphite
Bolt, Hex Head	Steel
Eye Bolt	Steel
Nut	Steel
Nameplate	Aluminum
Drive Screw	Steel
Pipe Plug, 1/2" NPT	Steel
Water Level Gage	Bronze
Inlet Reducer	M. Iron
Inlet Nipple	Steel
Inlet Check Valve	Bronze/Stainless Steel
Outlet Reducer	M. Iron
Outlet Nipple	Steel
Outlet Check Valve	Bronze/Stainless Steel

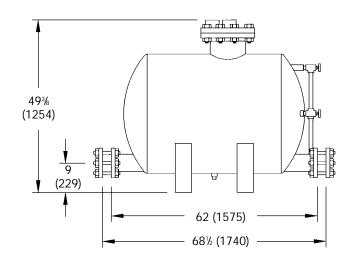
OPERATING CHARACTERISTICS

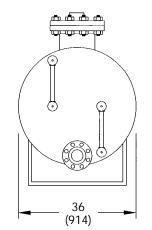
Pump Discharge per Cycle:	7.8 - 8.6 Gal
Max. Instantaneous Discharge Rate:	90 GPM (w/2" outlet check)
Steam Consumption:	~3 lbs per 1000 lbs. of liquid pumped
Air Consumption:	~100 SCF per 1000 lbs. of liquid pumped
Recommended Filling Head:	12"

Canadian Registration # 1352.92

See Capacities on page 91


Connections: 1" x 1" to 3" x 2" Screwed


Dimensions							
			Inches	s (mm)			Weight
Size	Α	В	C	D⁺	E*	F	lbs(k̃g)
1"x 1"	13 ³ /8	13 ³ /8	11	21 ³ /4	9	17 ³ /4	168
	(340)	(340)	(279)	(552)	(278)	(451)	(76)
1 ¹ /2"x 1 ¹ /2"	14 ³ /4	14 ³ /4	11	21 ³ /4	9	17 ³ /4	170
	(375)	(375)	(279)	(552)	(278)	(451)	(77)
2"x 2"	15	15	11	21 ³ /4	9	17 ³ /4	173
	(381)	(381)	(279)	(552)	(278)	(451)	(79)
3"x 2"	16 ¹ /2	15	11	21 ³ /4	9	17 ³ /4	185
	(419)	(381)	(279)	(552)	(278)	(451)	(84)


*Add 5" for Water Gage.

[†]Allow additional 21" clearance for maintenance.

Exhaust outlet: 2" NPT Motive inlet: 2" NPT

Dimensions-Inches (mm)

See Capacities on page 91

Canadian Registration # 1350.9

CONDENSATE COMMANDER BIG BOY PUMP SPECIFICATION

Pump shall be a pressure vessel drainer operated by steam, compressed air or other pressurized gas to 150 psig. Body shall be fabricated steel ASME code to 150 psi. Mechanism shall employ one spring operating in continuous compression. Springs shall be warrantied for the life of the unit. When required, unit shall be equipped with an external cycle counter and sight glass.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	150 psig	(10.3 barg)
TMO: Max. Operating Temperature	400°F	(204°C)
PMA: Max. Allowable Pressure	150 psig	(10.3 barg)
TMA: Max. Allowable Temperature	400°F	(204°C)

MATERIALS OF CONSTRUCTION

Tank Weldment Trip Mechanism w/Flange Gasket Stud, Flange Nut, Hex Nameplate Drive Screw Pipe Plug, 3/4" NPT Water Level Gage Inlet Check Valve Inlet Flange Outlet Check Valve Outlet Flange Steel Stl/SS Non-asbestos Steel Steel Aluminum Steel Steel Bronze Bronze/Stainless Steel Steel Bronze/Stainless Steel Steel

OPERATING CHARACTERISTICS

Pump Discharge per Cycle: Max. Instantaneous Discharge Rate:	140 - 185 Gal 195 GPM
Steam Consumption:	~3 lbs per 1000 lbs. of liquid pumped
Air Consumption:	~100 SCF per 1000 lbs. of liquid pumped
Recommended Filling Head:	24"

Canadian Registration # 1350.9

OPTIONS

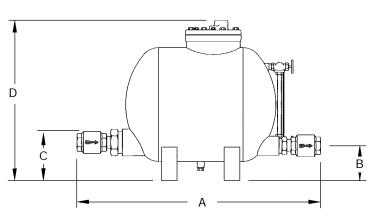
• High Back Pressure for back pressures above 60 psi

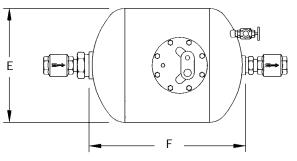
CONDENSATE COMMANDER HORIZONTAL PUMP SPECIFICATION

Pump shall be a pressure vessel drainer operated by steam, compressed air or other pressurized gas to 250 psig. Body shall be fabricated steel ASME code to 250 psi. Pump mechanism shall be all stainless steel without external packing or seals. Mechanism shall employ one spring operating in continuous compression. Spring shall be warrantied for the life of the unit. When required, unit shall be equipped with an external cycle counter, sight glass and insulating jacket.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	250 psig	(17.2 barg)
TMO: Max. Operating Temperature	400°F	(204°C)
PMA: Max. Allowable Pressure	250 psig	(17.2 barg)
TMA: Max. Allowable Temperature	400°F	(204°C)

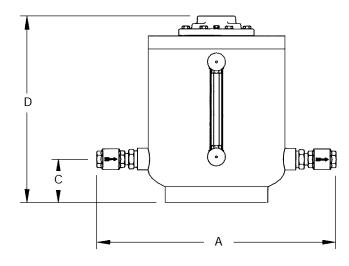

MATERIALS OF CONSTRUCTION

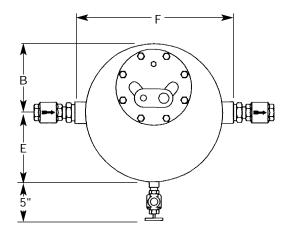

Tank Weldment	Steel
Trip Mechanism w/Flange	DI/StI/SS
Gasket	Non-asbestos
Bolt, Hex Head	Steel
Nameplate	Aluminum
Drive Screw	Steel
Pipe Plug, 1/2" NPT	Steel
Water Level Gage	Bronze
Inlet Reducer	M. Iron
Inlet Nipple	Steel
Inlet Check Valve	Bronze/Stainless Steel
Outlet Reducer	M. Iron
Outlet Nipple	Steel
Outlet Check Valve	Bronze/Stainless Steel

OPERATING CHARACTERISTICS

Pump Discharge per Cycle:	8.8 - 11 Gal
Max. Instantaneous Discharge	Rate:
	90 GPM (w/2" outlet check)
Steam Consumption:	~3 lbs per 1000 lbs. of liquid pumped
Air Consumption:	~100 SCF per 1000 lbs. of liquid pumped
Recommended Filling Head:	12"

Canadian Registration # 1351.9


Exhaust outlet: 1" NPT Motive inlet: 1/2" NPT


See Capacities on page 91

Connections: 1" x 1" to 3" x 2" Screwed

Dimensions							
			Inches	s (mm)			Weight
Size	Α	В	С	D⁺	E	F	lbs(k̃g)
1"x 1"	34¼	5½	6	25¼	18	25	174
	(879)	(140)	(152)	(641)	(457)	(635)	(79)
1 ¹ /2"x 1 ¹ /2"	36¾	5½	6	25¼	18	25	178
	(933)	(140)	(152)	(641)	(457)	(639)	(81)
2"x 2"	37%	5½	6	25¼	18	25	183
	(943)	(140)	(152)	(641)	(457)	(639)	(83)
3"x 2"	38¼	5½	6	25¼	18	25	190
	(971)	(140)	(152)	(641)	(457)	(639)	(86)

[†]Allow additional 21" clearance for maintenance.

See Capacities on page 91

Connections:	
1" x 1" to 1½" x 1½" NPT	

Dimensions							
			Inches	s (mm)			Weight Ibs(kg)
Size	Α	A B C D [†] E [*] F lbs					
1"x 1"	26¾	8	5	21¼	9	17¾	145
	(679)	(203)	(127)	(540)	(229)	(451)	(66)
1 ¹ /2"x 1 ¹ /2"	29 ½	8	5	21¼	9	17¾	155
	(749)	(203)	(127)	(540)	(229)	(451)	(71)

*Add 5" for Water Gage.

*Allow additional 18" clearance for maintenance.

CONDENSATE COMMANDER LITTLE BOY PUMP SPECIFICATION

Pump shall be a pressure vessel drainer operated by steam, compressed air or other pressurized gas to 150 psig. Body shall be fabricated steel. Mechanism shall employ one spring operating in continuous compression. Spring shall be warrantied for the life of the unit. When required, unit shall be equipped with an external cycle counter and sight glass.

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure	150 psig	(10.3 barg)
TMO: Max. Operating Temperature	400°F	(204°C)
PMA: Max. Allowable Pressure	150 psig	(10.3 barg)
TMA: Max. Allowable Temperature	400°F	(204°C)

MATERIALS OF CONSTRUCTION

Tank Weldment Trip Mechanism w/Flange Gasket Bolt, Hex Head Nameplate Drive Screw Water Level Gage Inlet Reducer Inlet Nipple Inlet Check Valve Outlet Reducer Outlet Nipple Outlet Check Valve Steel DI/StI/SS Non-asbestos Steel Aluminum Steel Bronze M. Iron Steel Bronze/Stainless Steel M. Iron Steel Bronze/Stainless Steel Bronze/Stainless Steel

OPERATING CHARACTERISTICS

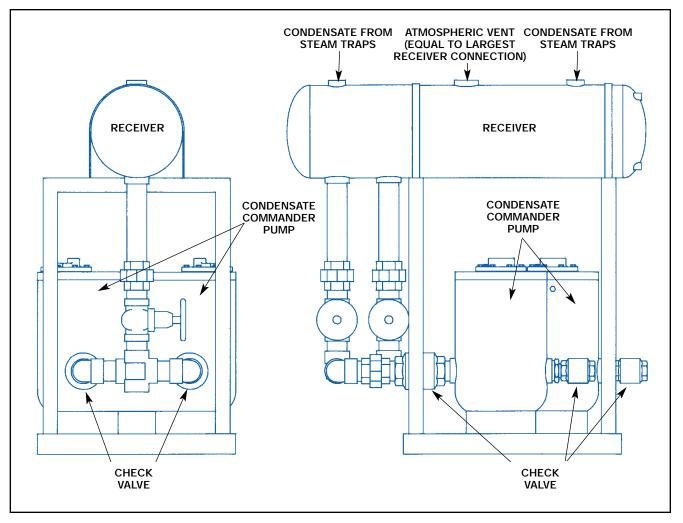
Pump Discharge per Cycle: 4.2 - 5.1 Gal Max. Instantaneous Discharge Rate:

	(w/1½" outlet check)
Steam Consumption:	~3 lbs per 1000 lbs. of liquid pumped
Air Consumption:	~100 SCF per 1000 lbs. of liquid pumped
Recommended Filling Head:	6"

Canadian Registration # 1353.92

CONDENSATE COMMANDER PUMP CAPACITY TABLE*

	lotive essure		ick sure		ead 6" e Boy		Fill H Classic 8	Fill Head 24 Big Boy	Fill Head 12" Classic Duplex		
psig	barg	psig	barg	1 X 1	1.5 X 1.5	1 X 1	1.5 X 1.5	2 X 2	3 X 2	4 X 4	3 X 2
250	17.24	40	2.76	-		2703	6392	10196	11537	-	23073
230	17.24	60	4.14	_	_	3670	7203	7787	8551	_	17101
		80	5.52	_	_	3457	6071	6531	7105	_	14209
		100	6.90	_	_	3891	5278	5753	6202	_	12404
		120	8.28	_	_	3700	4730	5213	5587	_	11173
		150	10.34	_	_	3196	4074	4552	4842	_	9683
		175	12.07	_	_	2845	3624	4092	4331	_	8663
		200	13.79	_	_	2456	3152	3650	3847	_	7694
		225	15.52	_	_	1963	2732	3221	3380	_	6761
200	13.79	40	2.76	_	_	2503	5919	9441	10682	_	21364
		60	4.14	_	_	3398	6669	7210	7918	_	15835
		80	5.52	_	_	4021	5579	6110	6619	_	13238
		100	6.90	_	_	3741	4855	5403	5804	_	11607
		120	8.28	-	-	3286	4242	4768	5088	_	10177
		150	10.34	_	-	2741	3533	4058	4297	_	8593
		175	12.07	-	-	2151	2926	3476	3661	_	7321
150	10.34	25	1.72	1814	5739	2314	5722	10376	12105	47994	24210
		40	2.76	3058	4860	3386	7077	8465	9450	45382	18899
		60	4.14	3127	4234	4464	6338	6995	7630	39757	15260
		80	5.52	2620	3472	3763	4974	5607	6040	35452	12080
		100	6.90	2261	2957	3168	4150	4743	5064	27971	10128
		120	8.28	1935	2530	2669	3522	4156	4408	20613	8815
125	8.62	25	1.72	2470	5645	2942	6740	10712	12337	48101	24674
		40	2.76	3215	4619	3983	7197	7965	8836	44256	17672
		60	4.14	2788	3768	4066	5513	6220	6758	38625	13516
		80	5.52	2358	3117	3326	4416	5064	5432	33012	10863
		100	6.90	1920	2535	2656	3544	4216	4482	25862	8964
		115	7.93	1491	2151	1952	2976	3589	3788	17512	7575
100	6.90	15	1.03	2036	6211	2762	6393	11889	14241	47156	28482
		25	1.72	3132	5336	3763	7658	9818	11170	45212	22340
		40	2.76	3082	4323	4569	6603	7403	8164	42041	16327
		60	4.14	2534	3406	3612	4893	5641	6092	35589	12184
		80	5.52	1959	2620	2716	3681	4428	4721	27783	9442
75	5.17	15	1.03	2975	6022	3867	7978	11977	14038	46485	28075
		25	1.72	3340	4940	4649	7823	8914	10026	43084	20052
		40	2.76	2817	3891	4078	5723	6654	7273	40027	14546
		60	4.14	2003	2732	2786	3863	4721	5057	20002	10114
50	3.45	10	0.69	3701	6273	4692	9227	12492	14737	46092	29474
		25	1.72	2976	4250	4343	6387	7603	8421	39727	16843
	4	40	2.76	2053	2891	2863	4120	5172	5578	19899	11156
25	1.72	5	0.34	3872	6625	5825	10486	13760	16560	45329	33120
		10	0.69	3315	5063	4845	7774	9812	11193	39945	22385
		15	1.03	2751	4016	3950	6043	7657	8513	18694	17026
10	0.69	2	0.14	3894	6646	5610	10348	14520	17621	-	35242
	0.24	5	0.34	2945	4600	4150	6954	9708	11085	-	22170
5	0.34	2	0.14	2981	5115	4130	7602	11747	13781	-	27562

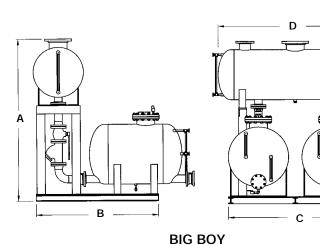

*Capacities shown are obtained with factory supplied check valves

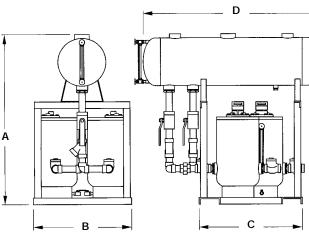
For Kg/Hr multiply by .454

For other multiplex capacities, consult factory.

CONDENSATE COMMANDER PUMP SKID MOUNTED SYSTEM

Where the condensate load exceeds the capacity of one Condensate Commander Pump, multiple pumps may be used in tandem. Skid mounted units may be simplex (one pump), duplex (two pumps), triplex (three pumps) or quadruplex (four pumps). The units are equipped with a receiver, Condensate Commander Pump(s) and all necessary piping fully connected and ready for use.

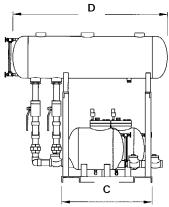



Typical Duplex Condensate Commander Pump Skid Mount System

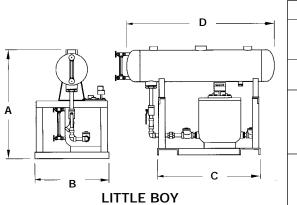
The skid mount systems are designed to provide a complete condensate collection and condensate pump unit ready to pipe. All necessary connections are in place. The filling head dimension has already been determined.

NICHOLSON

CONDENSATE COMMANDER PUMP **SKID MOUNTED SYSTEM**



CLASSIC VERTICAL


в

Α

Dimensions

CLASSIC HORIZONTAL

Style	Config-	Receiver Gallons		Inche	es (mm)	Weight Ib
e i j.e	uration	Gallons	Α	В	с	D	(kg)
Little Boy	Simplex	25	41 ½ (1054)	27 (686)	39 (991)	56 (1422)	435 (198)
Classic, Vertical	Simplex	25	58 ½ (1486)	27 (686)	39 (991)	56 (1422)	5 76 (262)
		65	64 ½ (1638)	27 (686)	39 (991)	66 ½ (1689)	635 (289)
Classic, Vertical	Duplex	65	64 ½ (1638)	36 (914)	39 (991)	66 ½ (1689)	1050 (477)
		80	66 ½ (1689)	36 (914)	39 (991)	68 (1727)	1095 (498)
Classic, Horizontal	Simplex	25	58 ½ (1486)	27 (686)	39 (991)	56 (1422)	596 (2713)
		65	64 ½ (1638)	27 (686)	39 (991)	66 ½ (1689)	655 (298)
Classic, Horizontal	Duplex	65	64 ½ (1638)	36 (914)	39 (991)	66 ½ (1689)	1095 (498)
		80	66 ½ (1689)	36 (914)	39 (991)	68 (1727)	1135 (516)
Big Boy	Simplex*	115	87 ¾ (2228)	50 (1270)	70 ½ (1791)	96 (2438)	1900 (864)
Big Boy	Duplex	250	97 ¾ (2482)	76 (1930)	80 (2032)	92 (2337)	3050 (1386)

*The layout for the Big Boy Simplex is the same as the Classic Horizontal.

93

CONDENSATE COMMANDER PUMP PRIMER

The SPENCE Condensate Commander belongs to a class of pressure operated pumps primarily intended to move condensate or other fluids without the use of electricity. When compared to conventional electrical pumps, the Condensate Commander is particularly suited to pumping "difficult" media such as high temperature condensate and corrosive fluids. Pressure operated pumps and the Condensate Commander in particular enjoy a reputation of long life with very little required maintenance. Generally these types of pumps, by eliminating rotating seals, electrical motors, and impellers, last five to ten times as long as conventional electrical pumps while eliminating most of the standard maintenance.

- Returns hot condensate conserving boiler feed water chemicals and reducing fuel cost associated with reheating boiler feed water.
- Pumps without requiring electrical service.
- Pump design provides safe operation for hazardous or explosive environments.
- Operates on steam, compressed air or gas from 5 psig to 250 psig depending on model.
- Capacities to 48,000 lbs./hr.

OPERATION

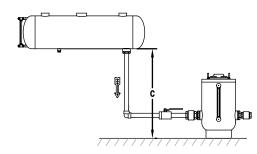
The Condensate Commander pumps by displacing fluid with steam or compressed gas. The float is connected to a linkage and spring that simultaneously actuates a motive valve and an exhaust valve. During the fill cycle the motive valve closes while the exhaust valve opens, allowing condensate to fill the pump housing. When the float, rising with the entering fluid level, reaches the top of its stroke, the mechanism releases the spring, opening the motive and closing the exhaust valves. Steam or compressed gas then flows into the pump displacing the fluid. Check valves positioned at the inlet and outlet of the pump direct the fluid in the direction of the flow.

CHARACTERISTICS

Flow capacity is dependent on several parameters. Bearing in mind that that the Condensate Commander pumps in discreet, relatively consistent slugs of fluid, the total capacity will depend on how quickly the Commander cycles. Motive pressure available and resistance in the flow line are the obvious causative and limiting factors of capacity. Less obvious is the Cv of the check valves, pressure or head of the incoming fluid, resistance in the vent line, and characteristics of the motive gas used.

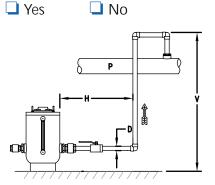
There is no "vacuum" side of a Commander pump. While there certainly is an inlet side, it is important to understand that the class of pumps the Condensate Commander belongs to does not draw or suck fluid into it. The media must flow by gravity into the pump. The greater the pressure and/or head, the greater the Cv of the inlet check, and to a lesser extent the greater the Cv of the exhaust vent, the faster the fill portion of the cycle will complete. With the fill portion completed the Commander mechanism will shut off the exhaust vent and open the motive valve. Steam or compressed

gas will now displace the fluid contained in the pump housing. Factors controlling the speed of the discharge portion of the cycle include pressure of motive steam or gas, outlet check Cv, downstream backpressure, and potentially temperature of flow media and/or ambient conditions if steam is utilized as the motive gas. This last component is often overlooked, but the fact that steam will condense and reduce actual motive pressure could become significant in some applications.


RECEIVER

Conventional electric condensate pumps typically require a receiver sized to allow condensate to cool and vent flash steam. This is necessary, as the suction side of the pump will lower pressure potentially allowing the hot condensate to boil as it is drawn past the impeller. This action, known as cavitation, will guickly erode the impeller. While the temperature of the flow media is generally not a concern it must be remembered that the Condensate Commander pumps in discrete cycles. While the Commander is expelling fluid the body is pressurized and cannot receive fluid. If fluid is draining to the Commander in a continuous fashion, a receiver sized to accommodate the maximum volume expected during the time required to discharge the commander must be utilized. Failure to do so will back condensate up and possibly increase pressure, potentially causing problems.

CONDENSATE COMMANDER PUMP CHECKLIST


(A) Sizing Requirements

- 1. What is the Fluid to be Pumped?
- 2. What is the fluid's Specific Gravity (i.e.: water = 1)?
- 3. What is the fluid's Fluid Temperature?
- 4. *What is the required Flow Rate?
- 5. What is the Clearance (C)?
- 6. Does the system have a Modulating Control Valve?

(B) Installation Requirements

°F
🗅 lb/hr 🕒 GPM
feet

Pump Connections:	Inlet		Outlet	🖵 NPT	🖵 Flanged	🖵 Oth	er		
*Motive Gas:	psig		°F	🖵 Air	🖵 Steam	🖵 Oth	ner		
*Total Return Header F	ressure (P):		psig	Downstrea	Downstream Pipe Size (D):				
Horizontal Run to Retu		feet	Vertical Li	ft to Return Hea	ader (V):	feet			
Can pump be vented	I to atmosphere?	🖵 Yes	🖵 No	lf "No",	please explair	۱			
Does the system hav	e an existing flas	h tank d	or receiver	r tank? 🛛	Yes 📮 No				
If "Yes", is it vented	If "Yes", is it vented to atmosphere or under pressure? 📮 Atmospheric 📮 Pressure psig								
(C) Materials & Accessories									
(C) Materials & A	cessories								
(C) Materials & Ac Tank Material:	Cessories	(STD)	🖵 Stainle	ess Steel	Other				
· ·		(STD)		ess Steel c Vertical	 Other Classic Hotel 	prizontal	Big Boy		
Tank Material:	Carbon Steel	. ,				prizontal	Big Boy250		
Tank Material: Tank Style:	Carbon Steel	. ,	Classic			prizontal			
Tank Material: Tank Style: Receiver Size:	Carbon Steel	65	Classio	c Vertical	Classic Ho	prizontal	250		
Tank Material: Tank Style: Receiver Size: Number of Pumps	 Carbon Steel Little Boy 25 One Bronze (STD) 	65	Classic	c Vertical ess Steel	Classic Ho		 250 Four 		
Tank Material: Tank Style: Receiver Size: Number of Pumps Check Valve: Options: Gage	 Carbon Steel Little Boy 25 One Bronze (STD) 	65 ump	 Classic 80 Two Stainle Cycle 	c Vertical ess Steel Counter	 Classic Ho 115 Three Other Motive Press 	essure PRV	 250 Four 		

CONDENSATE COMMANDER PUMP SELECTION GUIDELINES

To correctly select a Condensate Commander Pump that meets the requirements of the application, some specific data is needed.

- 1. Condensate load in lbs/hr. *
- 2. Motive pressure available (air or steam).
- 3. Total lift in feet (hydraulic head).
- 4. Pressure in return piping.
- 5. Filling head available in inches
- (recommended minimum of 12 inches). EXAMPLE 1, Steam motive:
 - 1. Condensate Load: 4.000 lb/hr.
 - 2. Steam pressure available: 50 psig
 - 3. Total vertical lift: 20 ft.
 - 4. Pressure in return piping: 10 psig
 - 5. Filling head available: 12 inches For filling head other than 12 inches, multiply capacity by correction factor found in Table 3.

SOLUTION:

1. Calculate total back pressure. Back pressure is the total head in feet multiplied by 0.433 plus the pressure in the return piping.

(20 ft. x .433) + 10 psig = 19

2. Select from the Pump Capacity Table a pump with 50 psig motive pressure and greater than 19 (25) psig total back pressure: a 1" x 1" Condensate Pump.

EXAMPLE 2, Air motive:

(conditions same as Example 1)

1.To determine correction factor for air, divide total back pressure from Example 1 by motive pressure available (BP÷MP).

19 ÷ 50 = 38%

Correction factor from Table 2 is 1.10

2. Divide required condensate load by correction factor.

4000 ÷ 1.10 = 3636

Select from the Pump Capacity Table (Table 1) a 1" x 1" Condensate Pump.

*CONVERSIONS:

GPM to lbs/hr:: GPM x 500 Lbs/hr to GPM: Lbs/hr. x .002 Lbs/hr to KG/hr: Lbs/hr. x .454

TABLE 1	– Pump Ca	pacity-	(lbs/hr)			
Operating	Total		Stainless	Steel Che	ck Valves	5
Pressure Inlet (psig)	Backpressure (psig)	1"x1"	1 ¹ /2"x1 ¹ /2"	2"x2"	3"x2"	3"x2" Duplex
5	2	4130	7602	11747	13781	27562
10	5	4150	6954	9708	11085	22170
10	2	5610	10348	14520	17621	35242
	15	3950	6043	7657	8513	17026
25	10	4845	7774	9812	11193	22386
	5	5825	10486	13760	16560	33120
	40	2863	4120	5172	5578	11156
50	25	4343	6387	7603	8421	16842
	10	4692	9227	12492	14737	29474
	60	2786	3863	4721	5057	10114
75	40	4078	5723	6654	7273	14546
	15	3867	7978	11997	14038	28076
	80	2716	3681	4428	4721	9442
100	60	3612	4893	5641	6092	12184
100	40	4569	6603	7403	8164	16328
	15	2762	6393	11889	14241	28482
	115	1952	2976	3589	3788	7576
	100	2656	3544	4216	4482	8964
105	80	3326	4416	5064	5432	10864
125	60	4066	5513	6220	6758	13516
	40	3983	7197	7965	8836	17672
	25	2942	6740	10712	12337	24674
	120	2669	3522	4156	4408	8816
	100	3168	4150	4743	5064	10128
150	80	3763	4974	5607	6040	12080
150	60	4464	6338	6995	7630	15260
	40	3386	7077	8465	9450	18900
	25	2314	5722	10376	12105	24210

TABLE 2 – Capacity Correction Factors forMotive Gas Supply other than Steam

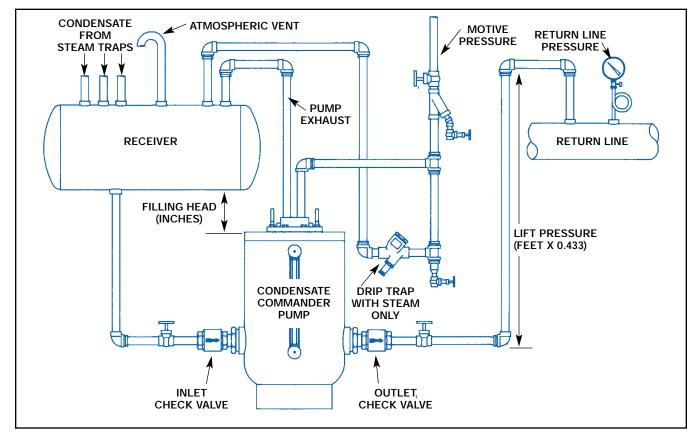

% Back Pressure vs. Motive Pressure (BP ÷ MP)								
10%	20%	30%	40%	50%	60%	70%	80%	90%
1.04	1.06	1.08	1.10	1.12	1.15	1.18	1.23	1.28

TABLE 3 – Capacity Correction Factor forFilling Head Variation

Filling Head	Check Valve and Piping Size Inches								
(inches)	1"	1 ¹ /2"	2"	3" x 2"	4"				
6	0.70	0.70	0.70	0.84	_				
12	1.00	1.00	1.00	1.0	0.7				
24	1.20	1.20	1.20	1.08	1.0				
36	1.35	1.35	1.35	1.20	1.1				
48	_	_	_	_	1.15				

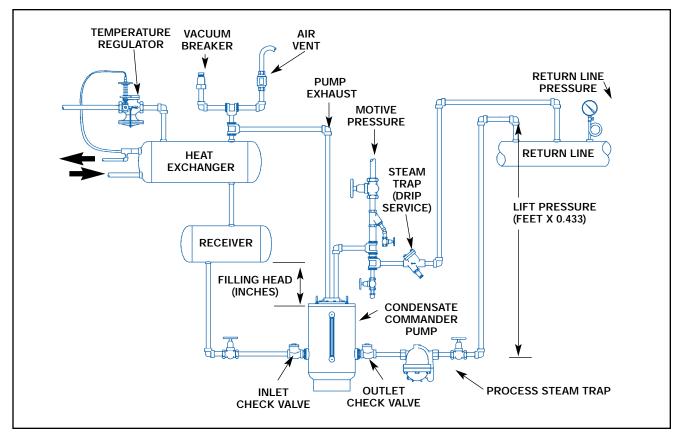
TYPICAL INSTALLATION OF A CONDENSATE COMMANDER PUMP WITH A VENTED RECEIVER

Condensate is being pumped from a vented receiver to an overhead elevated condensate return line that may contain pressure. For safety, the pump exhaust and receiver should be vented to atmosphere if steam is used for the motive pressure.

To efficiently drain condensate from an open system, the vented receiver should be horizontally located a minimum of twelve inches above the pump. To allow for sufficient volume of condensate and flash vapor, the receiver must be sized adequately to permit the complete separation of flash vapor from condensate. The receiver may be either an ASME coded tank or a length of large diameter pipe.

Sizing Example: Condensate Load = 10,000 lb/hr. Traps are draining a Heat Exchanger running at 100 psig and the receiver is vented to atmosphere. Table 5 shows 13.3% of the condensate flashes to steam, so total flash steam = $10,000 \times .133 = 1,333$ lb/hr flash steam. Table 4 indicates a vent size of 6" and a receiver size of 16" Dia. x 36" long.

TABLE 5 – Percent of Flash Steam Formed


TABLE 4 – Vented Receiver Sizing Receiver size based on 36" OAL								
Flash Vapor (Ibs/hr)	Pipe Diameter (inches)	Vent Line Size (inches)						
75	4	1 ¹ /2						
150	6	2						
300	8	3						
600	10	4						
900	12	6						
1200	16	6						
2000	20	8						

Initial Steam Pressure	Sat. Temp.			Receive	er Tank	Pressu	ıre, psiç	3	
psig	°F	0	5	10	20	30	40	50	

Pressure	Temp.		_		-	-			-
psig	°F	0	5	10	20	30	40	50	75
10	239	3.0	2.0	0	0	0	0	0	0
25	267	5.7	4.1	3.0	1.0	0	0	0	0
50	298	9.0	7.4	6.2	4.3	2.6	1.0	0	0
75	320	11.3	10.8	8.6	6.7	5.0	3.7	2.5	0
100	338	13.3	11.7	10.6	8.7	7.0	5.7	4.6	2.2
125	353	14.8	13.4	12.2	10.3	8.7	7.4	6.3	3.8

TYPICAL INSTALLATION OF A CONDENSATE COMMANDER PUMP IN A CLOSED SYSTEM

Condensate is flowing from a pressurized system to another pressurized system with greater pressure. Both the inlet and return line may be elevated. This installation will also service a high capacity process installation using a pressurized receiver.



To efficiently drain condensate in a closed system, the receiver should be horizontally located a minimum of twelve inches above the pump to allow for sufficient condensate collection. The receiver must be sized to provide the minimum condensate capacity required to prevent equipment flooding. The receiver may be either an ASME coded tank or a length of large diameter pipe. A safety relief valve may be required. Consult factory for capacity when a steam trap is utilized after the pump.

TABLE 6 – Inlet Receiver Sizing									
Liquid	Receiver Pipe Size (feet)								
(lb/hr)	3"	4"	8"	10"					
>500	2	—	—	—	-				
1000	2	—	—	—					
1500	3	2	—	—					
2000	3.5	2	1	—					
3000	—	3	2	—					
4000	—	4	2	1					
5000	—	6	3	2					
6000	—	—	3	2					
7000	—	—	3	2					
8000	—	—	4	2					
9000	_	_	4.5	3	2				
10,000	_	_	5	3	2				
11,000	_	_	5	3	2				

TYPICAL INSTALLATION OF A CONDENSATE COMMANDER PUMP IN A SUBMERGED APPLICATION

Liquid is pumped from a sump, manhole or other low-lying area where it may accumulate. For back pressure applications, multiply the total vertical lift by .5 plus any back pressure in the return line.

Condensate Commander Pumps can pump liquids from low lying areas such as manholes, steam pits or any area that may collect liquid or flood. The non-electric feature makes it a good choice if compressed air or any other gas is readily available for use as the driving force. Steam is not recommended as a motive vapor because a submerged pump may quickly condense the motive steam, potentially reducing performance.

Applications

- Steam Systems (up to 1500 PSIG superheat)
- Dowtherm
- Process Fluids & gases to 3000
 PSIG CWP (ie: Acids, Caustics Nitrogen, etc.)
- Manifolds on Steam Traps, Valves, Pumps & Compressors
- Nuclear Power Plants
- Hydraulic Fluids/ Hot Oils

UNIFLEX Carbon/Stainless Steel Pipe Couplings

Pressures To 3000 PSIG Temperatures to 850°F

Reduced Energy Costs

Spiral wound gasket assures long life and leak tight seal.

Accepted where Standard Unions are Inadequate

Seal equivalent to flange connections meets fugitive emissions needs.

Suitable for Most Services

Carbon steel and 316L stainless steel housings and a variety of gasket materials available to meet demands of most applications.

No Welding Damage to Seal

Because seal is installed after welding, the danger of damaging seal is eliminated.

Sizes to Meet Most Requirements

Available in $\frac{1}{2}$ " to 2", socketweld or threaded for a wide variety of piping needs.

Reduced Labor Costs

No need to replace union housing or spring pipe during make-up or disassembly which reduces time by more than 60%.

Reduced Cost of Materials

Only a change of gasket is required when disassembled.

Reduced Dollars in Inventory

Only a few gasket kits required. Components may be stocked and replaced individually because mated parts are not needed.

Components Interchangeable

All components within each size class are fully interchangeable. End connections can be socket weld, threaded or a combination of both.

Meets MSS-SP-83 for 3000 pound unions.

Uniflex Couplings and General Use Valves

Reduce your maintenance and stocking costs with **NICHOLSON**'s Uniflex Pipe Coupling. Uniflex has a spiral wound gasket that has successfully solved frequent leakage, intensive maintenance and stocking difficulties associated with ground joint pipe unions. A spreadsheet program is available upon request which calculates guaranteed savings when using Uniflex. **NICHOLSON** innovations set the standard.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

- Steam Systems-up to 1500 PSIG Superheat
- Dowtherm
- Variety of process fluids and gases to 3000 PSIG CWP, i.e.: Acids, Caustics, Nitrogen, etc.
- Steam Trap, Valve, Pump & Compressor Manifolds
- Nuclear Power Plants
- Hydraulic Fluids/Hot Oils

OPTIONS

- Teflon Gasket Filler
- Type 347 SS, Type 316 SS, Monel, Inconel 600, Hastalloy, Nickel Gasket Windings (other materials available on request)

Canadian Registration # 0A0583.9C

UNIFLEX STEEL/STAINLESS PIPE COUPLINGS

Pressures To 3000 PSIG (207 barg) Temperatures to 850°F (454°C)

No Energy Losses — from expensive steam and process fluid leaks. A spiral-wound gasket ensures a leak-tight seal.

Lower Maintenance/Labor Costs — Replacement of the union housing is eliminated. Only a change of gasket is required when the Uniflex Coupling is disassembled. No need to spring the pipe during make-up or disassembly. It is less costly to make and break than flanges.

Lower Inventory Costs — Only a few Uniflex Pipe Couplings and gasket kits in each size are required to back up installations. One Uniflex satisfies all pressure series of flanges in pipe sizes 1/2" to 2".

Ease of Installation — The gasket is held firmly in place with a patented retainer. There is no danger of damaging the seal during installation as it is fully protected from overtorquing.

Welded Piping Systems — With the gasket removed while welding coupling into the piping, the danger of damaging the seal is eliminated. Costly removal of sections of pipe to replace leaky unions is eliminated.

Component Interchangeability — All components of the Uniflex Couplings, in each size class, are fully interchangeable. End connections can be socket weld, threaded, or a combination of both.

MODELS

- SUA-T-Threaded Carbon Steel
- SUA-SW-Socketweld Carbon Steel
- SUASS-T-Threaded Stainless Steel
- SUASS-SW–Socketweld Stainless Steel
- SUG–Gasket Kit includes 10 gaskets.
- SUGR–Gasket Kit includes 10 gaskets and 10 retaining rings

Call or visit our website for *FREE* sample and cost savings spreadsheet.

Installation Tip: Use UNIFLEX in all Regulator and Trap Stations through 2" to simplify future changeouts.

OPERATION

The Uniflex Pipe Coupling (SUA) has successfully solved frequent leakage, intensive maintenance and stocking difficulties associated with ground joint-pipe unions.

The SUA is a modified forged steel or stainless steel pipe union utilizing a Spiral-Wound Gasket

to provide a leak-tight joint. This design, similar in principle to flange joints, has been proven in the field for many years. Because the joint seal is formed by the replaceable gasket (not a ground joint finish), failures caused by poor mating surfaces are eliminated. Components may be stocked and replaced individually because mated parts are not required for sealing.

NICHOLSON

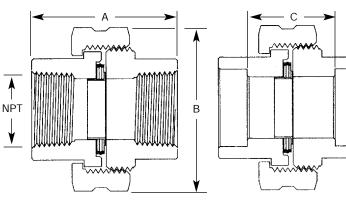
UNIFLEX STEEL/STAINLESS PIPE COUPLINGS

SPECIFICATION

Union shall be of the straight-through design with connections oppositely aligned, suitable for either horizontal or vertical piping installations. Union shall meet standards of MSS SP-83 for 3000 lb. unions. Connections shall be either screwed or socketweld and union shall have threaded nut. Gasket shall be of the spiral wound design and a retainer shall be utilized to locate and hold gasket during installation.

Union housing shall be forged steel ASTM A105 and have a pressure rating of 3000 PSIG at 100°F or type 316L stainless steel and have a pressure rating of 2430 PSIG at 100°F. Gasket winding shall be type 304 stainless steel with filler material of graphite. Gasket retainer shall be of type 316 stainless steel.

MAXIMUM OPERATING CONDITIONS


PMO: Max. Operating Pressure see Chart TMO: Max. Operating Temperature see Chart

MATERIALS OF CONSTRUCTION

Housing:	Forged Carbon Steel, ASTM- A-105 or Type 316L SS
Gasket:	Spiral wound 304 Stainless w/graphite filler
Gasket Retainer:	Type 316 Stainless Steel

ORDERING NOTE: If ordering different connection types (SW and NPT) on each end, the female end should be specified first.

Ex.: SUA-T (SW / NPT) = SW female / NPT male.

Uniflex Model SUA-T

Uniflex Model SUA-SW

Connections: 1/2"-2" NPT or socketweld

Dimensions					
Pipe	Inches (mm) We			Weight	
Size	A	В	С	Lbs (kg)	
1/2"	2.0	1.8	.9	0.8	
	(51)	(46)	(24)	(.36)	
3/4"	2.2	2.2	1.1	1.2	
	(56)	(56)	(29)	(.55)	
1"	2.4	2.6	1.1	1.6	
	(62)	(65)	(29)	(.73)	
1 ¹ /4"	2.8	3.0	1.4	2.5	
	(71)	(77)	(35)	(1.2)	
1 ¹ /2"	3.0	3.4	1.5	3.3	
	(76)	(86)	(38)	(1.5)	
2"	3.4	4.1	1.6	4.7	
	(86)	(103)	(41)	(2.2)	

Average weights listed-actual weights may vary slightly

Temperature/Pressure Ratings†				
Temperature	Pressure (PSIG) Carbon Steel	Pressure (PSIG) 316L SS		
100°F	3000 (-20°F*)	2430 (-325°F*)		
200°F	2735	2050		
300°F	2655	1835		
400°F	2565	1670		
500°F	2425	1545		
600°F	2220	1460		
700°F	2155	1390		
800°F	_	1330		
850°F	—	1300		

*Minimum recommended temperature †For 3000 lb. unions from MSS SP-83.

APPLICATION DATA

- Pressure Regulating for Steam Distribution
- Regulating for Fluid, Gas and Vapor Process Control
- Processes with Small, Relatively Steady Flow Rates

VALVE RATINGS

Construction	Pressure PSIG (bar)	Temperature °F (°C)
Cast Iron Cast Steel	250 (17.2) @ 600 (41.4) @	()

SPRING PRESSURE RANGES (PSIG)

TYPE D	TYPE D2
3-20	100-300
5-50	
10-100	
20-150	

Canadian Registration # OC 0591.9C

Installation Tip: Add Uniflex Pipe Coupling for ease of maintenance SEE PAGE 102

TYPE D & D2 DIFFERENTIAL PRESSURE VALVE

SIZES 1/4" – 1/2" PRESSURES to 600 PSIG at 750°F

- Self-contained
- Direct Operated
- Normally Open
- Packless Construction
- Accurate Regulation Unaffected by Service Conditions
- Easy In-line Maintenance
- Five Spring Ranges for Improved Control
- Utilizes Many Standard D/D2 Pilot Components

MODELS

- TYPE D VALVE ±1 PSI control of delivery pressure between 3 and 150 PSI
- TYPE D2 VALVE ±2 PSI control of delivery pressure between 100 and 300 PSI

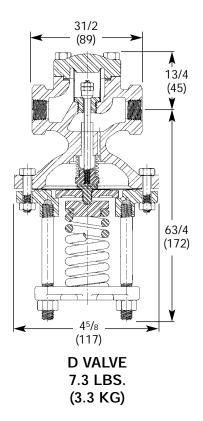
OPTIONS

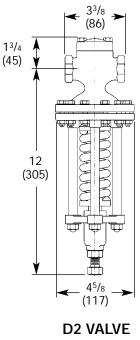
- Enclosed Spring Chamber
 Adjusting Handwheel
- Composition Disc
- Wall Bracket

TYPICAL CONFIGURATIONS

PRESSURE REDUCINGTYPE D VALVE	Е
PRESSURE REDUCINGTYPE D2 VALVE	E

Locking Device


TYPE D & D2 DIFFERENTIAL PRESSURE VALVE


SPECIFICATION

The Valve shall be of normally open design with packless construction. A strainer Screen shall be built into the valve inlet. The valve shall be single- seated, spring loaded and diaphragm actuated.

MATERIALS OF CONSTRUCTION

Body, Cast Iron	ASTM A126 CI B
Body, Cast Steel	ASTM A216 GR. WCB
Stem	. ASTM A582 COND A
Disc	STM A276-75 COND A
Seat420 St. St	I ASTM A276 COND A
Gasket	Non-Asbestos
Diaphragm30	1 St. Stl. MIL-5-5059C
Spring	Inconel

10.6 LBS. (4.8 KG)

NOTES:

AIR TRAPS/ LIQUID DRAINERS

NICHOLSON's Air Traps and Liquid Drainer Line continues our tradition of offering high value with traditional traps while simultaneously pushing the performance envelope with leading edge technology. **NICHOLSON** innovations set the standard.

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com

APPLICATIONS

Drain-Air

- Air Header Drainage (pocket risers, end of line)
- Air Station or Location where petcock is used for blowdown, collecting wells, separators.
- Mini-Drain
- Pneumatic Tools
- Air Filters
- Pneumatic Valves

Canadian Registration # OE0591.9C

DRAIN-AIR & MINI-DRAINS

Condensate Removal from Air Systems Pressures To 600 PSIG (41.4 barg) Temperatures to 220°F (104°C)

Automatic and Positive Drain — Effectively removes condensate from compressed air systems with minimum air loss and rapid shutoff on no load conditions.

Reliable — Only one moving part.

Low Maintenance Cost — No adjustments necessary. Replaceable cartridge for in line repair and/or cleaning.

Long Service Life — Stainless Steel internals.

Freezeproof — Will not freeze when installed in vertical position with muffler removed.

Quiet Operation — Meets OSHA noise standards.

Simplifies Startup — No need to drain air lines through manual valves or petcocks. Top performance is reached without waiting for system to purge.

Sized for Most Applications — Drain-Air available in 3/8" and 1/2"; Mini-Drain available in 1/8" and 3/8".

MODELS

- Drain Air–Forged body w/SS internal mechanism & nylon muffler
- Mini Drain–All SS integral body w/nylon muffler

Note: Pneumatic mufflers are available separately.

OPERATION

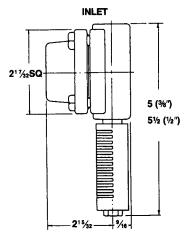
A simple disc is used with no linkage or close fitting parts to eliminate problems found in ordinary small float or piston-operated devices used in drip legs on air lines. Disc will lift off seat on a periodic time cycle, allowing moisture to be discharged and atomized through the muffler. Positive action of the disc assures reliable condensate removal with minimum loss of air and rapid shutoff on no load condition. Intermittent discharges atomize condensate to avoid messy accumulations produced by other devices. Highly effective, specially designed muffler eliminates noise and diffuses moisture so that discharge drain piping is usually unnecessary. Freeze proof when mounted in vertical position with outlet facing down and muffler removed.

DRAIN-AIR & MINI-DRAINS

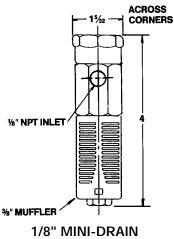
SPECIFICATION

The liquid drain trap shall be of thermodynamic design with screwed NPT connections. Internal mechanism shall be stainless steel with hardened working surfaces. A pneumatic muffler shall be employed to reduce exhaust sound pressure level.

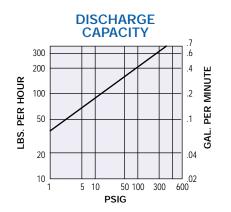
MAXIMUM OPERATING CONDITIONS

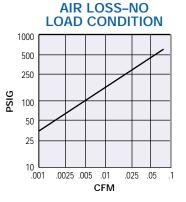

PMO: Max. Operating Pressure	600 psig	(41.4 barg)
TMO: Max. Operating Temperature	220°F	(104°C)
PMA: Max. Allowable Pressure	600 psig	(41.4 barg)
TMA: Max. Allowable Temperature	800°F	(426°C)

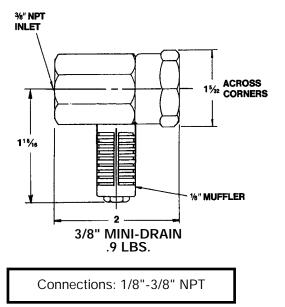
MATERIALS OF CONSTRUCTION


DRAIN-AIR

Body & Cover:ASTM A105 Forged Steel
Celtron® Cartridge:
w/hardened disc & seat
Bolts:
Cover Gasket:
w/graphite filler
Integral Strainer:
Muffler:
Connections:


MINI-DRAIN




3/8" & 1/2" DRAIN-AIR 2.3 LBS.

Pressures To 650 PSIG (44.8 barg) Temperatures to 750°F (400°C)

Sealed Stainless Steel Body — Lightweight, compact and corrosion resistant. No bolts or gaskets. Eliminates body leaks.

Self Centering Valve — Leak tight shutoff. Improved energy savings. Assembly of actuator and valve to impingement plate allows valve to self-align with center of valve seat orifice. Provides long lasting valve and seat.

Temperature Sensitive Actuators — One moving part. Stainless Steel, fail open, welded actuator for maximum corrosion, thermal and hydraulic shock resistance.

Thermal and Hydraulic Shock Resistant — Impingement plate plus welded construction prevent damage to actuator.

Hardened Stainless Steel Valve and Seat — Long life. Lapped as a matched set for steam tight seal.

Inexpensive — Low initial cost.

Maintenance Free — Sealed unit. Replacement traps cost less than repair of more expensive in-line repairable vents.

Directional Discharge — Pipe thread erosion prevented by directing discharge to center of pipe.

Guaranteed — Guaranteed for 3 years against defects in materials or workmanship.

MODELS

TAV-High capacity w/welded SS actuator

Platen Presses

- Plating Tanks
- Sterilizers
- Tire Presses
- Cooking Equipment
- Laundry Equipment
- Other Process Equipment

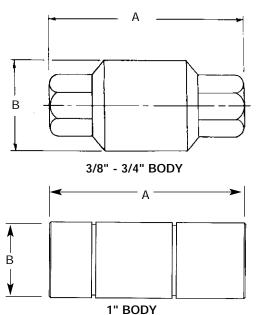
Canadian Registration # OE0591.9C

OPERATION

Thermal actuator is filled at it's free length with a liquid having a lower boiling point than water. As assembled, valve is normally open. On startup, air passes through vent.As air is eliminated, hot steam reaches vent and the thermal actuator fill vaporizes to a pressure higher than line pressure. This forces valve into seat orifice to prevent any further flow. Should more air collect, it takes heat from the actuator, lowering internal pressure. Line pressure will then compress thermal actuator to open valve and discharge air. Valve lift automatically adjusts to variations.

TAV SERIES THERMOSTATIC AIR VENT

SPECIFICATION


Air vent shall be of balanced pressure design stainless steel welded actuator capable of discharging air within 35°F of saturated temperature. Thermostatic actuator shall employ a conical valve lapped in matched sets with the seat ring assuring tight shut off. Vent shall be stainless steel bodied suitable for pressures to 650 psig and available in 3/8" through 1" NPT or socketweld.

MAXIMUM OPERATING CONDITIONS

Max. Operating Pressure	650 psig	(44.8 barg)
Max. Operating Temperature	650°F	(343°C)
Max. Allowable Pressure	650 psig	(44.8 barg)
Max. Allowable Temperature	750°F	(400°C)

MATERIALS OF CONSTRUCTION

Body & Cover:	ASTM A351 Grade CF3M (316L)
Actuator:	Welded Stainless Steel
Valve & Seat:	Hardened 416 Stainless Steel

I BODY

Connections:						
3/8" – 1" NPT or socketweld						

Dimensio NPT or Socket	Weight Lbs.					
weld	A	В́.	(kg)			
3/ _{8,} 1/2"	3 ³ /4	1 ³ /4	1.1			
	(95)	(44)	(0.5)			
3/4"	3 ^{15/16}	1 ³ /4	1.2			
	(100)	(44)	(0.54)			
1"	4 ³ /8	1 ³ /4	1.6			
	(111)	(44)	(0.73)			

Air Capacity—SCFM for 14.7 PSIA @ 60°F (dm ³ /s)																	
	Vent	Orifice	Inlet Pressure (barg)														
	vent	Inch (mm)	10 (0.7)	50 (3.5)	100 (6.9)	125 (8.62)	150 (10.3)	200 (13.8)	250 (17.2)	300 (20.7)	350 (24.1)	400 (27.6)	450 (31.0)	500 (34.5)	550 (37.9)	600 (41.4)	650 (44.8)
	TAV	5/16 (8)	33 (16)	34 (20)	156 (74)	192 (91)	230 (109)	300 (142)	370 (175)	440 (208)	510 (241)	580 (274)	650 (307)	720 (340)	790 (373)	860 (406)	930 (439)

STEAM SEPARATOR

APPLICATION DATA

- Steam, compressed
- air, and gas systems
- Steam mains
- Before steam turbines
- Hot air batteries
- Heat exchangers
- Duplicators
- Boilers
- Kilns
- Radiators

- Sterilizers
- Drip stations before temperature control or pressure reducing valves
- Steam inlets to process dry saturated steam
- Before filters and on the compressed air supply to sensitive instruments

ORDERING CODE

	ORDERING	CODE	
MODEL # (Must be 2 Digits)	CONNECTIONS	RATING – (Must be 4 Digits)	- SIZE
example: <u>E S</u>	I	<u>0150</u> —	- <u>C</u>
ES - Eliminator	T - NPT	0150 - 150#	C - ½
	W - Socketweld	0300 - 300#	D - 3/4
	F - Flanged	0600 - 600#	E - 1
			F - 1¼
			G - 1½
			H - 2
			J - 2½
			K - 3
			M - 4
			P - 6

Installation Tip: Always install a Steam Trap (i.e.: NFT, FTN, Max-Flo, Dura-Flo) after the Steam Separator SEE PAGE 32

ELIMINATOR SERIES **STEAM & AIR SEPARATOR**

Pressures to 990 PSIG (68.2 barg) Temperatures to 650°F (344°C)

Removal of Entrained Contaminants - Extracts nearly all moisture and solids above 10 microns

Long Service Life - No moving parts mean less wear and corrosion

High Capacities - Up to 35,000 lbs./hr steam Steel bodies and internals - Withstand unfavorable conditions and water hammer

Drain Outlet Below Condensate Level - Prevents steam leakage

Optimal Gravity Discharge - Drain located directly below the line

Maintenance Free - Regular maintenance is not required

Steam or Air Service

OPTIONS

Optional Insulation Jacket

MAXIMUM OPERATING CONDITIONS

- 1/2" 2" NPT & SW Class 400 - 990 psig (68.2 barg) @ 100°F (34°C)
- 21/2" 6" ANSI 150 Flanged Class 150 - 285 psig (19.6 barg) @ 100°F (34°C)
- 21/2" 6" ANSI 300 Flanged Class 300 - 740 psig (51.0 barg) @ 100°F (34°C)
- 21/2" 6" ANSI 600 Flanged Class 400 - 990 psig (68.2 barg) @ 100°F (34°C)

MODELS

- ES-150 150 psig ANSI Flanged
- ES-300 300 psig ANSI Flanged
- ES-600 600 psig NPT, Socketweld, ANSI Flanged

NOTE: This is a fabricated product. Custom designs are available. Please call factory for details.

Installation Tip: Always install a Y Strainer between the Steam Separator and Trap

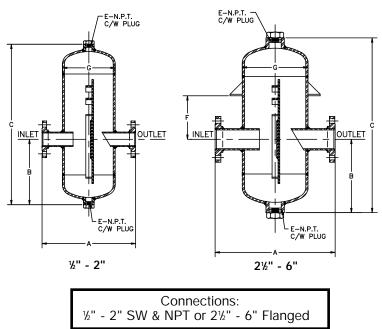
OPERATION

When the vapor enters the steam separator, a series of baffles change its flow direction several times. During this process, the baffles in the housing collect impinged water droplets that are carried in the system. Gravity allows the accumulated water droplets and

other foreign particles to fall to the drain and exit the system through a steam trap. The remaining steam in the system is clean and dry, allowing improved and maintained performance.

- equipment which require
- Laundry Processes

ELIMINATOR SERIES STEAM SEPARATOR


SPECIFICATION

Steam Separator shall have an internal baffle that does not exceed an equivalent length of pipe. The Steam Separator shall be installed in a horizontal pipe configuration with the drain directly below the line. The Steam Separator shall have an NPT bottom drain on which a mechanical constant flow steam trap shall be installed.

MATERIALS OF CONSTRUCTION

Body(½" to 2") Carbon Steel	ASTM SA53
(21/2" to 6") Carbon Steel	ASTM SA53
End CapsCarbon Steel AS	TM A-234 WPB
Coupling Carbon Steel	ASTM A-105
BaffleCarbon Steel	ASTM SA53
Stainless Steel	Optional
Plug Carbon Steel	ASTM A105
End Connections:	
(½" to 2") Carbon Steel	ASTM A105
(21/2" to 6") Carbon Steel	ASTM A105

SIZING INFO PAGE 139

Call factory for sizing information. Please provide the following:

1. Steam or Compressed Air System

2. Flow Rate (lb/Hr) ____

- 3. Separator Connection Size ____
- 4. System Pressure ____

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)

							-	
Pipe Size	Connection	A	B	C	E	F	G	Weight
1/2	NPT/SW	3 % (218)	5¼ (132)	10% (269)	³ / ₄ (20.3)	_	6 (152.4)	9 (4.1)
3/4	NPT/SW	8¾ (224)	5 ⁷ ⁄⁄8 (150)	12½ (307)	³ / ₄ (20.3)	_	6 (152.4)	10 (4.5)
1	NPT/SW	9 ¼ (236)	6 (152)	14½ (358)	³ / ₄ (20.3)	_	6 (152.4)	19 (8.6)
1-1/4	NPT/SW	9 ³ / ₈ (238)	7¼ (180)	16 ³ ⁄ ₈ (416)	³ / ₄ (20.3)	_	6 (152.4)	30 (13.6)
1-1/2	NPT/SW	11½ (287)	7% (193)	19 (483)	1 (25.4)	_	8 (203)	43 (19.5)
2	NPT/SW	11% (295)	11⅓ (206)	20% (523)	1 (25.4)	_	8 (203)	50 (22.7)
	Flanged ANSI 150	22½ (572)	9 ¾ (239)	24½ (622)	1 (25.4)	7¼ (180)	10 (254)	109 (49.4)
2-1/2	Flanged ANSI 300	22½ (572)	9 ¾ (239)	24½ (622)	1 (25.4)	7½ (180)	10 (254)	112 (50.8)
	Flanged ANSI 600	22½ (572)	9 % (251)	25% (650)	1 (25.4)	7 ½ (180)	10 (254)	113 (51.3)
	Flanged ANSI 150	25½ (643)	12 (305)	28% (726)	2 (50.8)	8 (203)	10 (254)	163 (73.9)
3	Flanged ANSI 300	25¼ (643)	12 (305)	28¾ (732)	2 (50.8)	8 (203)	10 (254)	169 (76.7)
	Flanged ANSI 600	25¼ (643)	12 ¾ (323)	29 % (759)	2 (50.8)	8 (203)	10 (254)	189 (85.7)
	Flanged ANSI 150	29 (737)	12% (320)	31¼ (792)	2 (50.8)	8 (203)	12 (305)	237 (108)
4	Flanged ANSI 300	29 (737)	12 % (320)	31¼ (792)	2 (50.8)	8 (203)	12 (305)	256 (116)
	Flanged ANSI 600	29 (737)	13 ¼ (335)	31¼ (792)	2 (50.8)	8 (203)	12 (305)	297 (135)
	Flanged ANSI 150	35¾ (909)	12 ¼ (312)	36 ¾ (932)	2 (50.8)	11¾ (290)	16 (406)	365 (166)
6	Flanged ANSI 300	35¾ (909)	12 % (315)	36½ (937)	2 (50.8)	11¾ (290)	16 (406)	401 (182)
	Flanged ANSI 600	35¾ (909)	13 (330)	37¾ (960)	2 (50.8)	11¾ (290)	16 (406)	551 (250)

Applications Unit Heaters Laundry Equipment

Plating TanksPlatent Presses

Refinery

Process

- Steam Tracing
- Drip Legs
- Heating
- Tire Presses
- Cooking Equipment

Zerk Cap Nut

standard grease fitting for lubrication and flushing of contaminants through one-way external seals

Snap Ring prevents accidental removal and/or overtorque in an open position

Slip Clutch

prevents overtorque in the closed position

Packing Nut

can be tightened to prevent leaks

Adjustable Grafoil Packing

simultaneously seals stem and valve body

Blowout Proof Lower Assembly

remains intact if upper assembly is damaged

Hardened 440

Stainless Steel Ball Tip floats for tight seal and proper alignment

Minimum 1/4" Ports Throughout assures high flow capacity

Big Block UMT Valve Station

EL OW

NICHOLSON

Pressures to 1440 PSIG Temperatures to 750°F

Inner and Outer Stems

isolate rotation from packing, reducing wear

One-Way Teflon® Seals

allow lubrication and cleaning of all components while protecting from contaminants

Test Port

provides visual indication of trap function and backflow

Faceplate

illustrates operation and flow direction

Connections

available in 1/2" and 3/4" NPT or Socketweld

Ventilation Fins

disperse heat and protect valve during welding

Stainless Steel Screen with Blowdown Valve

for easy cleaning

Compact Size for easy installation

PIPING Specialties

NICHOLSON manufactures a wide range of piping specialties to suit a broad spectrum of applications.

- Big Block UMTVS-BB
- STV Test & Block Valve
- Noise Diffuser
- Pneumatic Muffler

NICHOLSON innovations set the standard.

APPLICATIONS

- Unit Heaters
- Steam Tracing
- Drip Legs
- Heating
- Tire Presses
- Cooking Equipment

Plating Tanks Platent Presses Definent

Laundry Equipment

- Refinery
 Process
- pment

OPTIONS

• SW - Socketweld Connections

BIG BLOCK UNIVERSAL MOUNT TRAP VALVE STATION

Pressures to 1440 PSIG (99 bar) Temperatures to 750°F (399°C)

Compact Size — Isolation valves, test ports, strainer and blowdown valve combined in one "Big Block" for easy installation.

Universal Mount — Universal two bolt swivel trap mount installs permanently into system, simplifying installation and removal of trap.

Highest Pressure and Temperature Ratings — Suitable for virtually all applications.

All Stainless Steel — Body, internal wetted parts and polished inner stem are durable and corrosion resistant.

Blowout Proof Isolation Valves — Feature grease fittings to lubricate one way Teflon[®] seals and flush contaminants. Protected from overtorque.

Adjustable Grafoil Packing — Simultaneously seals stem and valve body.

Inner and Outer Valve Stems — Reduce wear.

Hardened 440 Stainless Steel Ball Tip — provides tight seal and proper alignment.

High Capacity — All internal ports at least 1/4".

MODELS*

UMTVS-BB

• Designed per ASME B16.5, Class 600

OPERATION

The UMTVS Big Block may be used in conjunction with any two-bolt universal mount steam trap. It combines a universal mount connector block with isolation valves, strainer, blowdown valves and test port to permit fast and easy testing, maintenance, and repair or replacement of a universal mount steam trap.

Integral Strainer and Blowdown Valve

The built-in strainer captures dirt and scale. The blowdown valve at the bottom of the connector block may be used periodically to clean out the strainer.

1st Inlet Isolation Valve (left)

Turning the first isolation valve to the off position (clockwise) stops the flow before it reaches the universal mount stream trap, strainer and blowdown valve. If the first isolation valve is opened (counter-clockwise) flow will be directed through the strainer and blowdown valve ports and to the universal mount steam trap.

Test port (on face)

Condensate exiting the universal mount steam trap is directed to the test port. Fully open the test port by loosening the larger test port valve located on the face of the block (counter-clockwise). This will provide a visual indication of the trap discharge pattern to determine the steam trap functionality.

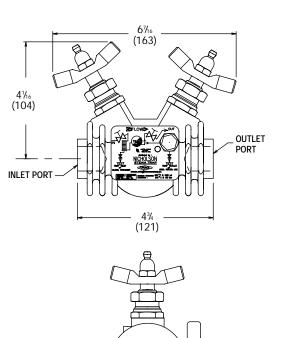
2nd Outlet Isolation Valve (right)

Turning the second isolation valve to the off position (clockwise) stops the flow to the outlet connection. The flow still may be exhausted through any of the previously mentioned ports. When the second isolation valve is open (counterclockwise), flow to the outlet connection will continue. Downstream backflow discharge may be observed through the open test port by closing the first Inlet Isolation Valve and blowdown valve and opening the second Outlet Isolation Valve.

BIG BLOCK UNIVERSAL MOUNT TRAP VALVE STATION

SPECIFICATION

Big Block Universal Mount Trap Valve Station shall be a universal mount connector block with integral strainer, blow-down valve, test ports, and dual isolation valves. Body shall be 304L stainless steel. It shall be suitable for pressures to 1440 PSIG. End connections shall be NPT or Socketweld and accommodate connection sizes of 1/2" and 3/4". It shall function in any orientation. It shall accept universal mount steam traps. The isolation valves shall be bonnetless and blowout proof with a relubrication system.


MAXIMUM OPERATING CONDITIONS*

Class 600 - 855 psi (59 barg) @ 750°F (399°C) 1440 psi (99 barg) @ 100°F (170°C)

MATERIALS OF CONSTRUCTION

BodyInvestm	ent Cast 304L Stainless Steel**
Blowdown Valve	
Strainer	304 Stainless Steel .033 Perf
Test Port & Lock Nut	
Internal Components	Stainless Steel
External Seals	Teflon®
Packing	Grafoil
* Per ASME B16.5, Class 600	

** Per ASTM A351-CF

(78) DIMENSIONS - INCHES (MM) WEIGHT: 6 LBS. (2.7 KG)

31⁄8

1% (47)

Connections: 1/2" & 3/4" NPT or Socketweld

APPLICATIONS

- Test Steam Traps
- Sample Fluids or Gases from Process Lines

OPTIONS

- Stainless Steel Latch-lok Handle
- Extended Handle

Canadian Registration # OCO591.97

STV SERIES COMBINATION TRAP TEST & BLOCKING STEAM VALVE

Pressures To 250 PSIG (17.2 barg) Temperatures to 406°F (208°C)

Visual Steam Trap Test — Provides for quick visual examination of steam trap discharge.

Compact Body — Small size facilitates installation and operation in tight spaces.

Stainless Steel Internals — High quality materials provide long service life and protection against corrosion.

Repairable — All parts are easily replaceable.

Large Size Test Vent — Vent passage in ball is large enough to provide true determination of trap discharge.

Safety Designed — Bottom loaded, pressure retaining stem and packing nut threaded to body provides extra margin of safety.

Reduces Labor Costs — Eliminates need to install and maintain separate blocking and test valves.

Minimizes Risk of Connection Leaks — Eliminates the need for numerous fittings.

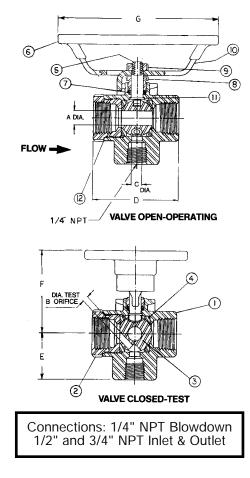
OPERATION

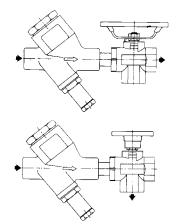
STV test/block valve is installed on downstream side of steam trap. During normal operation, valve is in open position with unrestricted flow through trap into the return system.

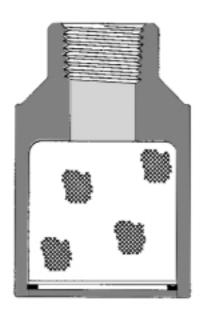
One quarter turn (90°) of STV blocks flow from return and vents trap discharge to atmosphere. Provides quick, visual check of trap operation.

STV SERIES COMBINATION TRAP TEST & BLOCKING STEAM VALVE

MAXIMUM OPERATION CONDITIONS


PMO: Max. Operating Pressure	250 psig	(17 barg)
TMO: Max. Operating Temperature	406°F	(208°C)
PMA: Max. Allowable Pressure	250 psig	(17 barg)
TMA: Max. Allowable Temperature	406°F	(208°C)


MATERIALS OF CONSTRUCTION


Body:ASTM A216 WCB Carbon Steel
(Blk oxide & oil coat)
Adapter:
Ball:
Seat:
Stem:
Insulator:
Packing Gland:Carbon Reinforced Teflon
Packing Nut:
Handle Nut:Steel (Zinc plated)
Handle:
Thrust Washer:Glass Reinforced Teflon
Body Seal:Virgin Teflon

DIMENSIONS

			Weight					
Size	Α	В	С	D	Е	F	G	Lbs. (kg)
1/2"	.375	.156	.281	2.26	1.20	2.17	4.25	1.1
(15)	(10)	(4)	(7)	(57)	(30)	(55)	(108)	(.5)
3/4"	.531	.218	.281	2.83	1.49	2.45	4.25	1.4
(20)	(13)	(6)	(7)	(72)	(38)	(62)	(108)	(.64)

APPLICATIONS

Steam Traps

Blowdown Valves

• Air Cylinders

SS600 SERIES NOISE DIFFUSER

Pressures To 600 PSIG (41.3 barg) Temperatures to 750°F (400°C)

Diffuses Blast Discharge — Diffuses the high velocity discharge from steam traps.

Reduces Noise — Dampens the level of noise associated with steam trap cycles.

Corrosion Resistant — All stainless steel construction provides excellent protection from corrosion.

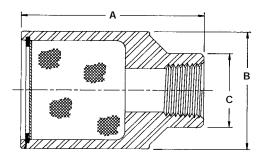
Causes No Back Pressure — Porous stainless steel baffle allows condensate discharge without back pressure.

Compressed Air Capabilities — Diffuser works as a muffler for compressed air exhaust.

Repairable in-line — Snap ring design allows for easy element replacement.

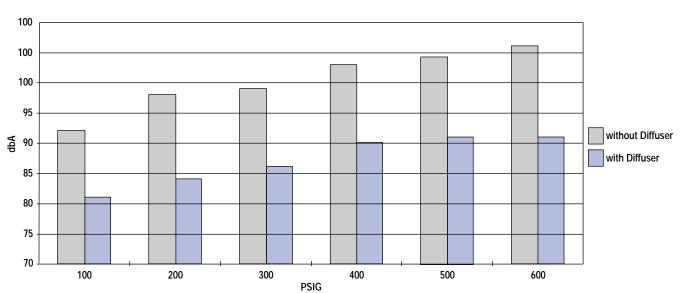
OPERATION

The SS600 Diffuser is installed on the outlet side of steam traps, valves or other equipment that discharges high velocity steam, condensate or air to the atmosphere. The baffle is constructed of a fine stainless steel wire mesh, similar to steel wool. This porous mesh breaks down the high velocity discharge which dampens the sound significantly.


SS600 SERIES NOISE DIFFUSER

MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure600 psig(41.3 barg)TMO: Max. Operating Temperature750°F(400°C)PMA: Max. Allowable Pressure600 psig(41.3 barg)TMA: Max. Allowable Temperature750°F(400°C)CWP: Max. Cold Working Pressure1,000 psig (69 barg)


MATERIALS OF CONSTRUCTION

Body:	ASTM A351 Grade CF3M (316L)
Retaining Ring:	
Element:	

Connections	2/0"	2/4"	NDT
Connections:	3/8 -	3/4	INPT

Dimensions						
NPT		Inches	Weight			
Size	Α	В	С	Lbs.		
3⁄8"	2¾	1 ²⁵ / ₃₂	1%	.85 lbs		
Ъ.	2¾	1 ²⁵ / ₃₂	1%	.81 lbs		
3/4"	2 ²⁵ / ₃₂	1 ²⁵ / ₃₂	¹⁵ /16	.88 lbs		

Noise Three Feet from Trap Discharge

PNEUMATIC MUFFLERS

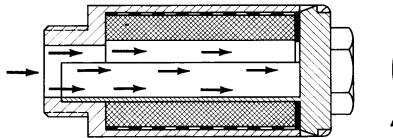
Pressures To 600 PSIG (41.4 barg) Temperatures to 220°F (104°C)

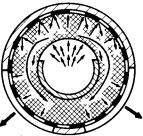
Reduces Noise to Acceptable Levels — Specifically designed to reduce the noise of exhaust.

Compact and Lightweight — Adds minimal space and weight to installation.

Durable Construction — Will provide years of service.

Corrosion Proof — Nylon and felt construction will not corrode in most services.

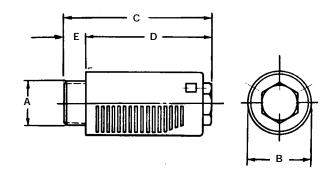

APPLICATIONS


- 2, 3 and 4-way Valves
- Pneumatic Cylinders
- Air Motors
- Air Tools
- Instrumentation
- Bench Fixtures
- Test Panels
- Relief Valves

OPERATION

The muffler housing and plug are made of nylon. compressed exhaust air enters the muffler as shown by the flow arrows. It is then diverted by

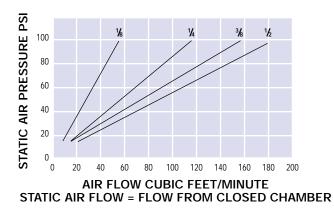
a plastic insert sleeve through a packing of sound deadening felt and out through exit slots. A fine mesh screen shields the felt packing and retains it in position.

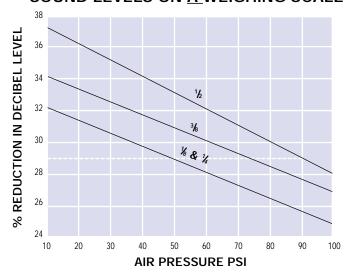

PNEUMATIC MUFFLERS

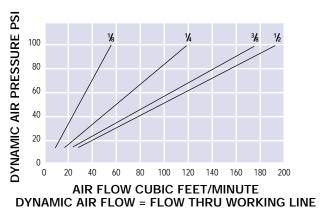
MAXIMUM OPERATING CONDITIONS

PMO: Max. Operating Pressure TMO: Max. Operating Temperature		(41.3 barg) (104°C)
PMA: Max. Allowable Pressure TMA: Max. Allowable Temperature	1 0	(41.3 barg) (104°C)

MATERIALS OF CONSTRUCTION


Housing:Nylon
Screen:Aluminum
Media:Felt


Connections: 1/8" – 1/2" NPT


Dimensions						
A NPT	A NPT Size B C D E					
1/8"	.63	1.72	1.38	.34		
1/4"	.83	2.06	1.66	.40		
3/8"	.99	2.43	2.03	.40		
1/2"	1.18	2.90	2.37	.53		

AIR FLOW AND SOUND MEASUREMENTS OF NICHOLSON PNEUMATIC MUFFLERS

SOUND LEVELS ON A WEIGHING SCALE

USING GRAPH

- Condition: Exhaust of air at 90 PSI produces a noise level of 100 dbA. Noise must be reduced to an acceptable level.
- Solution: 1/2" Muffler will reduce level 29%. Muffled discharge will be at 71 dbA.

124

NICHOLSON

Steam Trapping Primer

Steam Trapping Primer – *NICHOLSON* has been known throughout the 20th Century as a pioneer and engineering leader in the Steam Trapping industry. Our line of Steam Traps includes the four major types: Mechanical, Thermodynamic, Thermostatic and Drain Orifice.

NICHOLSON Steam Traps are available for use at temperatures to 800° F, and pressures from vacuum to 3000 PSIG.

BASICS OF STEAM TRAPS

WHY DO WE NEED STEAM TRAPS?

In order to operate economically and efficiently, all steam systems must be protected against 3 factors:

- * CONDENSATE
- * AIR
- * NON-CONDENSIBLES

Condensate is formed in a system whenever steam gives up its useable heat. And, since condensate interferes with the efficiency of the operation of a steam system, it must be removed.

Air, one of natures finest insulators, when mixed with steam, will lower its temperature and hinder the the overall effectiveness of an entire system. For example: A film of air 1/1000th of an inch thick offers as much resistance to heat transfer as 13" of copper or 3" of steel. For that reason, air MUST be continuously bled from a system by steam traps to have it operate efficiently and to conserve energy.

Non-condensibles, such as carbon dioxide promote corrosion and other deterioration of equipment and inhibit their function.

WHAT IS A STEAM TRAP?

A steam trap is basically an automatic valve which discharges condensate, undesirable air and non-condensibles from a system while trapping, or holding in, steam. They fall into 4 major categories; *Thermostatic, Mechanical, Thermodynamic* and *Drain Orifice*.

Each type will be discussed in detail in this section.

In every steam system, there are four phases of operation in which traps play a vital role:

- Start-up During "start-up", when the system is initially activated, air and non-condensibles must be discharged.
- Heat-up During "heat-up", as the system works to achieve the desired temperature and pressure, condensate is discharged.
- At Temperature "At temperature", when the desired levels are reached, the valve must close to retain the steam.
- 4) Using Heat At the "using heat" level, the valve's job is to stay closed unless and until condensate occurs; then the valve must open, discharge the condensate and close

quickly and positively, without allowing valuable steam to escape.

WHAT ARE THE QUALITIES OF A GOOD STEAM TRAP?

A good steam trap should:

- Discharge condensate, air and non-condensibles.
- Be equal to the load over a wide range of pressures and temperatures.
- Be freeze-proof where necessary.
- Be simple and rugged.
- Have few moving parts.
- Require low maintenance and spare parts inventory.
- Have a long life.

A good steam trap should not:

- Discharge live steam.
- Fail or malfunction if pressure changes.
- Respond slowly or hesitantly.
- Open too often, too briefly or for too long.
- Require constant adjustment or frequent repair.
- Require a wide variety of models, spare parts or orifice sizes for different pressures.

THERMOSTATIC STEAM TRAPS

Thermostatic steam traps, as their name implies, operate in direct response to the temperature within the trap. There are two primary types: *BELLOWS* and *BIMETALLIC*.

BELLOWS TRAPS

Of all actuating devices, the bellows trap most nearly approaches ideal operation and efficiency and is most economical. It is positive in both directions, is fast acting and does not require adjustment. Bellows traps employ only one moving part - a liquid filled metal bellows which responds quickly and precisely to the presence or absence of steam.

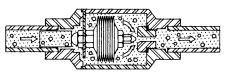
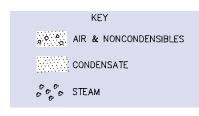
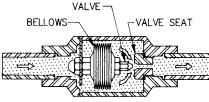




FIGURE 13

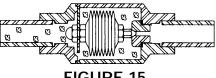
During startup and warmup, a vacuum in the bellows keeps it retracted, with the valve lifted well clear of the seat permitting air and non-condensibles to be freely discharged (Figure 13).

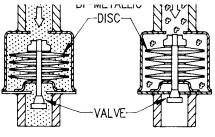
FIGURE 14

Next, condensate is discharged (Figure 14). Then heat from arriving steam will cause the liquid in the bellows to vaporize and close the valve (Figure 15).

At temperature, the valve will remain closed indefinitely opening only when condensate, air or other non-condensibles cause it to retract and open.

When live steam re-enters the trap housing, the bellows extends immediately, trapping the steam (Figure 15).




FIGURE 15

The bellows, unlike a disc trap, is a temperature sensitive rather than a time cycle device. There is no way that air can be mistaken for steam and cause binding, since bellows react to temperature only. And unlike bucket traps, bellows traps do not require a variety of sizes for valves and seats for various pressures.

BIMETALLIC TRAPS

Bimetallic traps work like the differential metal strip in a thermostat, using the unequal expansion of two different metals to produce movement which opens and closes a valve.

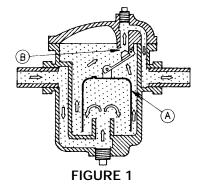
Figure 16: When the cooler condensate contacts the bimetallic discs, the discs relax. Inlet pressure forces the valve away from its seat and permits flow.

FIGURE 16

FIGURE 17

Figure 17: When steam enters the trap and heats the bimetallic discs, the discs expand forcing the valve against its seat preventing flow. Bimetallic traps are simple and positive in both directions. However, they have a built-in delay factor which makes them inherently sluggish. Moreover; they do not maintain their original settings because the elements tend to take a permanent set after use, which requires repeated adjustment to maintain efficiency.

MECHANICAL STEAM TRAPS


There are two basic types of mechanical steam traps:

1) FLOAT & THERMOSTATIC 2) INVERTED BUCKET

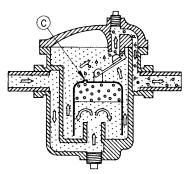

Inverted bucket traps, as their name suggests, operate like an upside down bucket in water.

Figure 1: During startup, the trap is filled with water, with the bucket (A) at

the bottom and the valve (B) fully open to allow condensate to flow out freely.

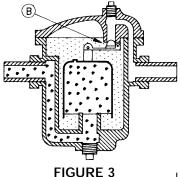
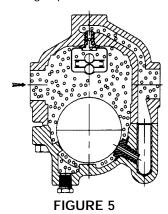


FIGURE 2

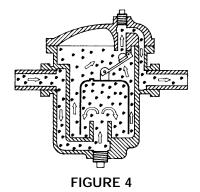
Figure 2: Air trapped in the bucket escapes through a vent hole (C). On

MECHANICAL STEAM TRAPS CONT'D.

some buckets, an additional vent hole is controlled by a bimetallic strip which is kept closed by the steam. Therefore, the vent only operates during startup. This limits bucket trap air handling capacity. **Figure 3:** At temperature, steam enters under the bucket and causes it to float



up and


close the valve (B). During heat use, any condensate entering the line is forced up into the bucket. The bucket looses buoyancy and drops down, reopening the valve and discharging the condensate. (see Figure 1)

Bucket traps are rugged and reliable, however, air building up in the bucket can bind them closed causing condensate to back up in the line. Also, they can waste steam if they lose their prime Because bucket traps rely on a fixed force, the weight of the bucket, discharge orifices must be sized by pressure. For example, a trap sized to operate at 50 PSIG will not open at 150 PSIG. Float traps are manufactured in a variety of sizes, shapes and configur-

variety of sizes, snapes and configurations. The most commonly used (for steam service) is the float and thermostatic, or F & T. F & T traps combine the excellent air venting capabilities of a thermostatic trap with the liquid level controlling capabilities of a float trap.

Figure 5: During startup, before condensate reaches the trap, the thermostatic element is fully open to discharge air. The float rests on the lower seat.

(see Figure 4). Bucket traps require priming water in the trap which makes them vulnerable to freeze up unless expensive insulation is added.

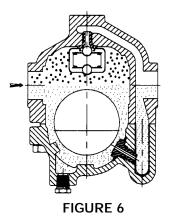


Figure 6: As hot condensate and steam reach the trap, the thermostatic element expands, closing the air vent. Condensate lifts the float, allowing condensate to flow out of the trap.

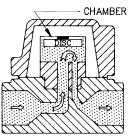
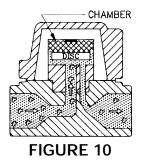

FIGURE 7*

Figure 7: As the condensing rate decreases, the float lowers, reducing flow through the trap. The buoyancy of the float will maintain a liquid level seal above the lower seat ring, preventing the escape of steam. As with inverted bucket traps, float and thermostatic traps rely on a fixed force (the buoyancy of the float). Discharge orifices must be sized by differential pressure. Placing a low pressure float and thermostatic trap in high pressure service will result in the trap locking up. A contrasting characteristic of both the float and thermostatic and inverted bucket is the discharge cycle. A float & thermostatic trap tends to continuously discharge condensate while the inverted bucket trap discharges condensate in cycles.

*NFT Free Float Steam Trap shown


THERMODYNAMIC STEAM TRAPS

Essentially, a thermodynamic steam trap is a time cycle device which responds to imbalances of pressure applied to a valving device, usually a disc.

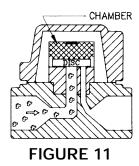

FIGURE 9

Figure 9: Pressure caused by air or condensate lifts the disc permitting flow through the trap.

Figure 10: When steam arrives at the inlet port, blowby at a high velocity creates low pressure under the disc. Some of the flashing condensate is

blown past the disc into the upper chamber, forcing the disc downward.

Figure 11: Further flow is stopped when sufficient pressure is trapped in the chamber above the disc. During operation, a decrease in chamber pressure permits inlet pressure to lift the disc and open the trap (**Figure 9**).

The decrease in the chamber pressure should only be caused by the presence of cooler condensate. Due to the design of most thermodynamic traps, especially in cold or wet conditions, the chamber may be prematurely cooled causing improper or frequent cycling as well as steam loss and increased wear. Advanced TD designs have a steam jacket which surrounds the chamber and prevents ambient conditions affecting the operation of the disc. This type of trap is also subject to water binding. If water pressure is trapped above disc, trap will fail closed.

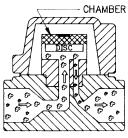
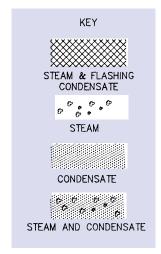
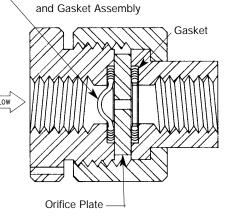



FIGURE 12

Figure 12: Trap is easily affected by dirt and/or other foreign matter which will cause trap to fail open.



ORIFICE STEAM TRAPS

60 Mesh Dome Strainer

Orifice type traps are engineered continuous flow devices. Orifice traps discharge air, condensate and all other non-condensible gases with minimal live steam loss.

The fixed orifice size is calculated, for a given application, to discharge the condensate load at maximum thermal recover efficiency. Approximately 10 to 25 percent of discharging hot condensate flashes to steam at the downstream side of the orifice, at a constant pressure drop. This flashing effect further restricts the flow of saturated steam. In actual conditions, a minimum percentage of steam, by weight, is discharged with condensate, since the specific

1/2", 3/4" and 1" FNPT, or Socket Weld End Connections available

volume of steam is relatively large compared to that of the condensate.

The velocity through the orifice is highly turbulent. The initial calculated steam loss can be expected to remain relatively constant over the expected trap life of 10 plus years. The major factor for energy efficient performance is based on initial orifice sizing for the application. Properly sized, thermal efficiencies of 98 percent plus can be attained. While Orifice Traps can be applied at all pressures, they are ideally suited

for use on saturated or superheated

steam 250 PSIG or greater.

SIZING STEAM TRAPS

HOW TO DETERMINE THE PROPER SIZE TRAP

Capacity tables that follow show maximum discharge rates in pounds per hour. To select the correct size trap from these tables, the normal condensing rate should be converted to a "pounds per hour" basis and multiplied by a safety factor.

REASON FOR SAFETY FACTORS

For steam applications, the condensation rate varies with:

- (1) The starting or warming-up condition.
- (2) The normal operating condition.
- (3) Any abnormal operating condition.

Of these, the condensing rate for the normal condition is occasionally known, or it can be estimated with sufficient accuracy for trap selection; the loads imposed by warm-up and abnormal conditions are seldom known and practically impossible to predict.

During warm-up the trap load is heavy, since air as well as large quantities of condensate must be discharged. Condensate forms at a rapid rate as the cold equipment and connecting piping are brought up to temperature. This usually results in pressure drop at the trap inlet, thereby reducing its capacity during the period when the load is maximum.

Safety factors are therefore necessary, to compensate for startup conditions, variation of steam pressure and product initial temperature, the process cycle speed required, and discrepancies between assumed and actual conditions which determine the normal condensing rate.

The selection of a safety factor depends on the type of trap and the operating conditions. If the known or calculated normal condensing rate is multiplied by the recommended factor from the pages which follow, efficient trapping will be assured.

EFFECT OF BACK PRESSURE ON TRAP CAPACITY

Most trap installations include piping the outlet into a common return system or to an available disposal location. In either case a constant static back pressure may exist, against which the trap must discharge. This back pressure may be unintentional or deliberately produced.

Unintentional back pressure in condensate return piping is caused by lifting the condensate to a higher level, piping which is too small for the volume of liquid conveyed. piping with insufficient or no pitch in the direction of flow, pipe and fittings clogged with rust, pipe scale or other debris, leaking steam traps, etc. In steam service an intentional back pressure is instigated by means of a pressure regulating or spring-loaded valve in the discharge system, when a supply of flash steam at a pressure less than the trap pressure is needed.

If very hot condensate is discharged to a pressure less than that existing in the trap body, some of it will flash into steam, with a tremendous increase in volume and consequent choking and build-up of pressure in the trap's discharge orifice and the passages and piping adjacent thereto. For condensate at or close to steam temperature, this flash pressure is quite high, usually considerably higher than any static back pressure existing in the trap outlet piping.

For this reason, capacity tables for thermostatic and thermodynamic traps are based on gage pressure at the trap inlet, instead of on the difference between trap inlet and discharge pressures. Experiments have shown that, for the temperatures applying to these tables, unless the static back pressure in the return piping exceeds 25% of the trap inlet pressure, no reduction of the trap capacity results. For back pressures greater than 25% of the trap inlet pressure there is a progressive decrease of trap capacity.

Thus, if the return piping static pressure is less than 25% of the trap inlet pressure, the capacities shown in these tables should be utilized for trap selection. If the return piping pressure is greater than 25% of the trap inlet pressure, reduce the table capacities by the percentage indicated in second line of Table A on the following pages.

Above data does not apply to mechanical traps, capacities are based on differential pressure, obtained by subtracting any static back pressure from trap inlet pressure.

WHEN THE NORMAL CONDENSING RATE IS KNOWN

Normal condensing rate means the pounds of steam condensed per hour by the average conditions which prevail when the equipment drained is at operating temperature.

If this amount is known, simply multiply by the safety factor recommended for the service and conditions, obtained from the pages which follow, and determine size directly from the capacity tables for the type of trap selected.

WHEN THE NORMAL CONDENSING RATE IS UNKNOWN

Determine by utilizing proper formula for the service and equipment to be trapped. Multiply the result by safety factor recommended for the operating conditions. See examples on the following pages.

SIZING STEAM TRAPS CONT'D.

EXPLANATION OF SYMBOLS USED IN NORMAL CONDENSING RATE FORMULAS

- A = Heating surface area, square feet (see Table B)
- B = Heat output of coil or heater, BTU per hour
- C = Condensate generated by submerged heating surfaces, Ibs/hr/sq ft (Table F)
- D = Weight of material processed per hour after drying, pounds
- F = Steam flow, Ibs/hr
- G= Gallons of liquid heated per unit time
- H = Heat loss from bare iron or steel heating surface, BTU/sq ft/°F/hr
- L = Latent heat of steam at pressure utilized, BTU/lb (see Table C or obtain from Steam Table)
- M = Metal weight of autoclave, retort or other pressure vessel, pounds
- **Qh** = Condensate generated, Ibs/hr
- Qu = Condensate generated, Ibs/unit time (Always convert to Ibs/hr before applying safety factor. See Examples using formulas 7 and 10 on next page).
- S = Specific heat of material processed, BTU/lb/°F
- Ta = Ambient air temperature, °F
- Tf = Final temperature of material processed, °F
- Ti = Initial temperature of material processed, °F
- Ts = Temperature of steam at pressure utilized, °F (see Table C or obtain from Steam Table)
- U = Overall coefficient of heat transfer, BTU/sq ft/°F/hr (see Table E)
- V = Volume of air heated, cubic feet/minute
- Wg= Liquid weight, Ibs/gallon
- Wh = Weight of material processed per hour, lbs
- Wu = Weight of material processed per unit time, Ibs
- **X** = Factor for $\frac{\text{Tf-Ti}}{\text{L}}$ (obtain from Table D)
- \mathbf{Y} = Factor for $\frac{H(Ts-Ta)}{L}$,Ibs/hr/sq ft (obtain from Table C)

AIR HEATING

Steam mains should be trapped at all points where condensate can collect, such as at loops, risers, separators, end of mains, ahead of valves, where mains reduce to smaller diameters, etc., regardless of the condensate load. Installation of traps at these locations usually provides ample capacity.

For Pipe Coil Radiation, Convectors and Radiators

Single Continuous Coil	2
Multiple Coil	4

Damp Space Pipe Coil Radiation; Dry Kilns; Greenhouses; Drying

Steam Line Separators; Line Purifiers

(3) Qh =	.10 F
----------	-------

Recommended Safety Factors	
Indoor Pipe Line	2
Outdoor Pipe Line	3
If Boiler Carry-Over Anticipated 4 to	6
(Depending on probable severity of	
conditions)	

Unit Heaters; Blast Coils (Forced Air Circulation)

(4) When BTU Output is Known: $Qh = \frac{B}{L}$

(5) When BTU Output is Unknown, Heat Transfer Area is Known:	
Qh = 5 A Y	
(6) When Volume of Air Heated is Known:	
Qh = 1.09 V X	
Recommended Safety Factors	
Intake Air Above Freezing -	
Constant Steam Pressure 3	}
Intake Air Above Freezing -	
Variable Steam Pressure 4	ļ
Intake Air Below Freezing -	
Constant Steam Pressure 4	ļ
Intake Air Below Freezing -	
Variable Steam Pressure 5	5

Example: 11,500 cubic feet of air per minute heated by blast coil from 50°F to 170°F with 50 PSIG constant steam pressure.

Solution: By formula (6), Qh = 1.09 x 11,500 x .132 = 1655 lbs/hr. Recommended safety factor, 3 for intake air above freezing and constant steam pressure. 3 x 1655 = 4965 lbs/hr trap capacity required.

SIZING STEAM TRAPS CONT'D.

LIQUID HEATING

Submerged Coils; Heat Exchangers; Evaporators; Stills; Vats; Tanks; Jacketed Kettles; Cooking Pans; etc.

(7) When Quantity of Liquid to be Heated in a Given Time is Known:

Qu = G Wg S X

(8) When Quantity of Liquid to be Heated is Unknown:

Qh = A U X

(9) When Heating Surface Area is Larger than Required to Heat Known Quantity of Liquid in a Given Time:

Qh = AC

When maximum heat transfer efficiency is desired, or when in doubt, use formula (9) in preference to formulas (7) and (8).

Recommended Safety Factors

For Submerged Coil Equipment; Heat Exchangers; Evaporators; etc.

Constant Steam Pressure:

Single Coil, Gravity Drainage	2
Single Coil, Siphon Drainage	3
Multiple Coil, Gravity Drainage	4

Variable Steam Pressure:

Single Coil, Gravity Drainage 3 Single Coil, Siphon Drainage 4 Multiple Coil, Gravity Drainage 5

For Siphon Drained Equipment, specify traps with "Steam Lock Release Valve".

For Jacketed Equipment; Cooling Kettles; Pans; etc.

Slow Cooking:	
Gravity Drainage	3
Siphon Drainage	4
Moderately Fast Cooking:	
Gravity Drainage	4
Siphon Drainage	5
Very Fast Cooking:	
Gravity Drainage	5
Siphon Drainage	6
or Siphon Drained Equipment, specify	y

For Siphon Drained Equipment, specify traps with "Steam Lock Release Valve".

Example: Heat exchanger with single submerged coil, gravity drained, heating 1250 gallons of petroleum oil

of 0.51 specific heat, weighing 7.3 lbs/gal, from 50°F to 190°F in 15 minutes, using steam at 100 PSIG.

Solution: By formula (7), Qu = 1250 X 7.3 x .51 x .159 = 740 pounds of condensate in 15 minutes, or 4 x 740 = 2960 lbs/hr. Recommended safety factor is 2 for single coil, gravity drained. 2 x 2960 = 5920 lbs/hr trap capacity required.

DIRECT STEAM CONTACT HEATING

Autoclaves; Retorts; Sterilizers;

Reaction Chambers; etc.

(10) Qu = Wu S X + .12 M X

Recommended Safety Factors

Slow Warm-up Permissible 3 Fast Warm-up Desired 5

- **Example:** An autoclave which weighs 400 pounds before loading is charged with 270 pounds of material having a specific heat of .57 and an initial temperature of 70°F. Utilizing steam at 50 PSIG, it is desired to bring the temperature up 250°F in the shortest possible time.
- **Solution:** By formula (10), Qu = (270 x .57 x .198) + .12(400 x .198) = 40pounds of condensate. Using safety factor of 5 recommended for fast warm-up and assuming 5 minutes as the time required to complete the reaction, a trap capacity of 40 x 12 x 5 = 2400 lbs/hr is required.

INDIRECT STEAM CONTACT HEATING

Cylinder Dryers, Drum Dryers, Rotary Steam Tube Dryers, Calenders; etc.

(11) Qh = <u>970 (W- D)</u> + Wh X

Recommended Safety Factors

For Siphon or Bucket Drained Rotating Cylinder, Drum and Steam Tube Dryers; Cylinder Ironers; etc.

Small or medium Size, Slow Rotation4 Small or Medium Size,Fast RotationLarge Size, Slow Rotation6Large Size, Fast Rotation8

For Siphon or Bucket Drained Equipment, specify traps with "Steam Lock Release Valve". Each cylinder should be individually trapped.

For Gravity Drained Chest Type Dryers and Ironers

Each Chest Individually Trapped... 2 Entire Machine Drained By Single Trap 4 to 6 Depending on number of Chests

For Platen Presses

Example: A medium size rotary steam tube dryer with condensate lifted to a discharge passage in the trunion, dries 4000 lbs/hr of granular material to 3300 pounds, with 15 PSIG steam, initial temperature of material 70°F, final temperature 250°F.

Solution: By formula (11) Qh =

<u>970 (4000 - 3300)</u> + (4000 x .191) 945

= 1483 lbs/hr. Using safety factor of 4 recommended for medium size, slow rotation: 4 x 1483 = 5932 lbs/hr trap capacity required.

*A separate trap for each heating surface (coil, chest, platen, etc.) is recommended for maximum heating efficiency. Sluggish removal of condensate and air is certain when more than one unit is drained by a single trap, resulting in reduced temperatures, slow heating and possible water-hammer damage.

TABLE A — EFFECT OF BACK PRESSURE ON STEAM TRAP CAPACITY

Back Pressure as Percent of Inlet Pressure	10	20	25	30	40	50	60	70	80	90
Percent Reduction of Trap Capacity	0	0	0	2	5	12	20	30	40	55

TABL	TABLE B – SQUARE FEET OF SURFACE PER LINEAL FOOT OF PIPE																		
Nominal Pipe Size (In.)	1/2	3/4	1	1¼	1½	2	2½	3	4	5	6	8	10	12	14	16	18	20	24
Area, Sq. Ft. per Lineal Ft.	.22	.28	.35	.44	.50	.63	.76	.92	1.18	1.46	1.74	2.26	2.81	3.34	3.67	4.19	4.71	5.24	6.28

TABLE C - FACTOR Y - H(Ts-Ta)/L - APPROXIMATE CONDENSING RATE FOR BARE IRON AND STEEL PIPE*

Steam Pressure - PSIG	1	2	5	10	15	20	25	50	75	100	150	200	250	300	350	400	450	500	600
Steam Temperature - °F	215	219	227	239	250	259	267	298	320	338	366	388	406	422	436	448	460	470	489
Latent Heat - BTU/lb	968	966	961	952	945	939	934	911	895	879	856	839	820	804	790	776	764	751	728
Factor Y Cond - lbs/hr/sq.ft	. 0.45	0.46	0.49	0.53	0.56	0.59	0.71	0.84	1.02	1.10	1.34	1.47	1.58	1.80	1.91	2.00	2.35	2.46	2.65

*Based on still air at 60F, recommended safety factors compensate for air at other temperatures. Used for steam trap selection only.

TABLE D — FACTOR X = (Tf-Ti)/L

Tf-Ti																			
°F	1	2	5	10	15	20	25	50	75	100	150	200	250	300	350	400	450	500	600
40	.041	.041	.042	.042	.042	.043	.043	.044	.045	.045	.047	.048	.049	.050	.051	.052	.052	.053	.055
60	.062	.062	.062	.063	.064	.064	.064	.066	.067	.068	.070	.072	.073	.075	.076	.077	.079	.080	.082
80	.083	.083	.083	.084	.085	.085	.086	.087	.089	.091	.093	.096	.098	.100	.101	.103	.105	.106	.110
100	.103	.103	.104	.105	.106	.106	.107	.110	.112	.114	.117	.120	.122	.124	.127	.129	.131	.133	.137
120	.124	.124	.125	.126	.127	.128	.129	.132	.134	.136	.140	.144	.146	.149	.152	.155	.157	.160	.165
140	.145	.145	.146	.147	.148	.149	.150	.154	.156	.159	.163	.167	.171	.174	.177	.180	.183	.186	.192
160	.165	.166	.167	.168	.169	.170	.172	.176	.179	.182	.187	.191	.195	.199	.203	.206	.210	.213	.220
180			.187	.189	.191	.192	.193	.198	.201	.204	.210	.215	.220	.224	.228	.232	.236	.240	.248
200				.211	.212	.213	.214	.219	.224	.227	.234	.239	.244	.249	.253	.258	.262	.266	.275
220						.235	.236	.242	.246	.250	.257	.262	.268	.274	.279	.283	.288	.293	.303
240								.263	.268	.273	.280	.286	.292	.299	.304	.309	.314	.319	.330
260									.290	.296	.304	.310	.317	.324	.329	.335	.340	.346	.357
280									.313	.319	.327	.334	.342	.349	.354	.361	.367	.373	.385
300											.350	.358	.366	.373	.380	.387	.393	.400	.412

TABLE E — FACTOR U, HEAT TRANSFER COEFFICIENTSBTU/HR/SQ FT/°F TEMP. DIFFERENTIAL

	AVERAGE D	DESIGN VALUES
TYPE OF HEAT EXCHANGER	NATURAL CIRCULATION	FORCED CIRCULATION
STEAM TO WATER	125	300
STEAM TO OIL	20	45
STEAM TO MILK	125	300
STEAM TO PARAFFIN WAX	25	80
STEAM TO SUGAR & MOLASSES SOLUT	IONS 75	150

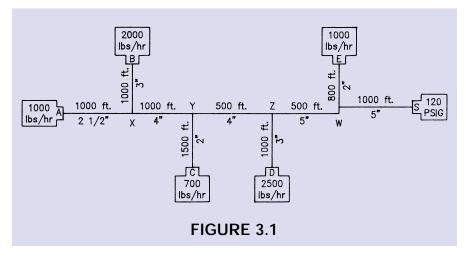
Coefficients shown are suggested average design values. Higher or lower figures will be realized for many conditions. Use for steam trap selection only.

TABLE F — FACTOR C, APPROXIMATE CONDENSING RATE FOR SUBMERGED SURFACES, LBS/HR/SQ FT

HEATING	DIFFEREN	ICE BE	TWEEN	STEAM	TEMPE	RATUR	E AND	MEAN \	NATER	TEMPE	RATURE	*
SURFACE	25	50	75	100	125	150	175	200	225	250	275	300
IRON OR STEEL	1.6	5	10	17	25	34	45	57	70	84	99	114
BRASS	2.6	8	16	27	40	54	72	91	112	134	158	182
COPPER	3.2	10	20	34	50	68	90	114	140	168	198	228

* Mean water temperature is 1/2 the sum of inlet temperature plus outlet temperature. Table based on heating surfaces submerged in water with natural circulation. Safety factor of 50% has been included to allow for moderate scaling. If surface will remain bright, multiply above figures by 2. Use for steam trap selection only.

SIZING STEAM LINES


SIMPLE SIZING CRITERIA

Proper detailed design of a steam system should be done using detailed calculations for frictional losses in steam piping. The following examples and rules are meant to provide simple guidelines to see if steam pipe sizes are possibly undersized. They do not imply any design liability by Nicholson. Undersizing of steam lines can lead to reduced pressure to process equipment and impaired performance of valves, heat exchangers and steam traps. Steam line sizing along with condensate return line sizing should always be checked when a system is not performing up to expectations.

EXAMPLE: The system shown in Figure 3.1 will be used as our example. The Supply "S" at the right is 120 psig steam which is branching off to steam users A, B, C, D & E. The equipment usage is indicated in lbs/hr. The segments of piping will be addressed going backwards from the furthest end user A. The steam flow going through the pipe segment from the intersection X to equipment A is 1000 lb/hr (the usage of A). A simple rule of thumb for smaller steam piping (6" and below) is to keep steam velocities below 10,000 feet/minute (165 feet/second) for short lengths of pipe only.

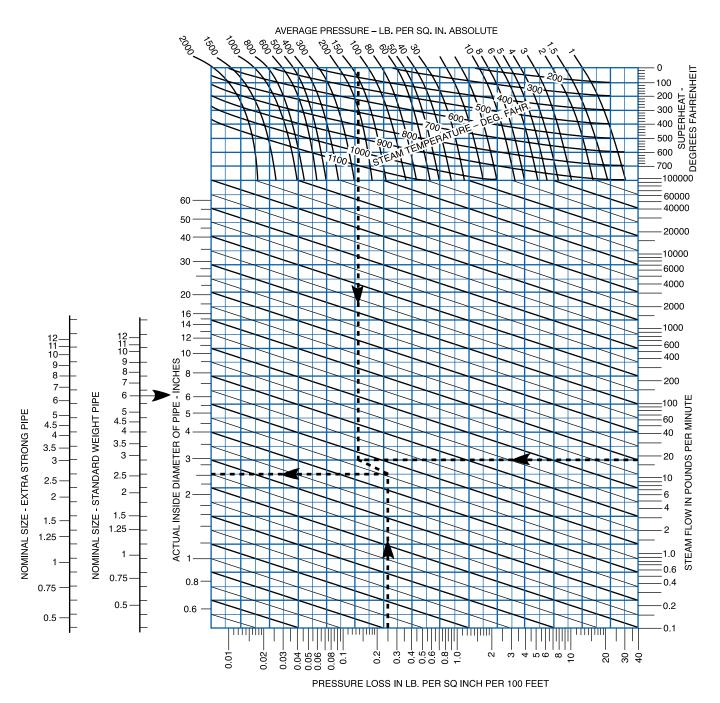
The length of the steam line between X and A is 1000 feet, so the simple rule of thumb can not be applied here because the pressure drop will be too high. The pressure drop should be kept to a minimum, or supply pressure to the equipment will droop.

SOLUTION BY CHART: The chart is a graphic solution to help select pipe sizes. The pressure values used for this chart are in psia (absolute). For values given in gage pressure (psig), you must add 15 psi (14.7 psi actual). The example we will use is for saturated steam flow, but this chart does have corrections for superheat. There will be an overall system pressure drop, so that the pressure is assumed to be 5 to 10 psig below the supply pressure of 120 psig (135 psia). Enter the chart at the

top at a point representing 130 psia and proceed vertically downward. Enter the chart at the right at the value of the steam flow in Lb/minute (1000 lb/hr = 16.7 lb/min) and move horizontally across until the horizontal line intersects the vertical line. You will proceed along the diagonal, downward and to the right, parallel with the other diagonal lines.

This chart can be used two ways: either to determine the pressure drop of an existing pipe or to determine the correct pipe size for a specific pressure drop.

TO SIZE LINES: On the bottom of the chart is a pressure drop per 100 feet of pipe, select a value of 0.25 psi per 100 feet. This indicates 2.5 psi as the total loss for 1000 feet. Enter the chart at the bottom at .25 and move upward until you intersect the diagonal line. Proceed from the intersection horizontally left until you reach the actual pipe inside diameter to determine the pipe size. In this example, the pipe size for section X to A should be 2 1/2" pipe.


TO FIGURE PRESSURE DROP: Enter the chart on the left side at your pipe size and proceed horizontally until you intersect with the diagonal line. Proceed vertically downward to determine the pressure drop per 100 feet of pipe.

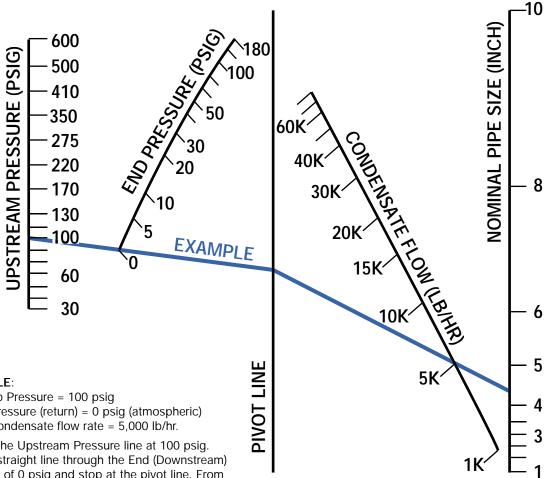
The next section of pipe to determine would be X to B. This would have the same pressure, but the intersection of the vertical line would be at the horizontal steam flow of 33 lb/min (2000 lb/hr) for user B. The choice of pipe sizes can be argued, a 4" will yield 0.1 psi/100 feet pressure drop (1.0 psi per 1000 feet), but the more economical solution of a 3" pipe yields a 0.4psi/100 feet pressure drop. *Note*: when selecting the smaller more economical pipe size, there is less room for expansion and pressure drops will increase should additional process capacity arise.

For common sections of header such as Y to X, the steam flow for both steam users A and B must be combined. The vertical line will now intersect with the horizontal steam flow line coming across at 50 lb/min (3000 lb/hr). Using a 4" line will bring the pressure drop to a value of 0.22 psi/100 feet, or 2.2 psi for the 1000 foot section.

Remember that pressure drop figures from the bottom of the chart are per 100 feet, so segments such as Y to C have a larger total pressure drop because the distance is longer. Similarly, the total pressure drop from Z to Y is less because the distance is only 500 feet. The values for steam flow continue to be additive for each steam user; Z to Y is 3700 lb/hr (61.7 lb/min), W to Z is 6200 lb/hr (103.3 lb/min) and S to W is 7200 lb/hr (120 lb/min). Pipe sizes in Figure 3.1 are given for your reference and provide the user with reasonable pressure drops in the steam lines.

SIZING STEAM LINES CONT'D.

SIZING CONDENSATE RETURN LINES


When condensate passes through a steam trap orifice, it drops from the upstream pressure in the heat exchanger to the downstream pressure in the condensate return line. The energy in the upstream condensate is greater than the energy in the downstream condensate. As the condensate passes through the steam trap, the additional energy from the upstream condensate forms a percentage of flash steam that changes based upon the upstream

and downstream pressures (this percentage can be seen in Table 5 in the Condensate Commander section).

When sizing condensate return lines after the steam trap, it is important to take into account the amount of flash steam created when hot, saturated condensate undergoes a pressure drop. The flash steam has very large volume and can cause very high velocities if the return line is not sized properly. These high velocities can create high backpressure in the return line that often

leads to poor steam trap performance.

We will size the condensate return line based upon flash steam velocities, The percentage of flash steam versus condensate (water) is usually on the order of 20 to 1, so the effect of the water in the system sizing is usually small. Choosing a velocity of flash steam is often subjective and different manufacturers will suggest different values. The nomograph below sizes return lines based upon 50 feet/second.

squared. For example, if you require a Pipe Diameter for 80 ft/sec, use the following equation:

Nomograph Diameter x

New Velocity (FT/SEC)

Example: The Nomograph Diameter determined in the previous example is 4.2". Using the above formula, the Pipe Diameter for 80 ft/sec is 3.3".

EXAMPLE:

Inlet Trap Pressure = 100 psig Outlet Pressure (return) = 0 psig (atmospheric) Actual condensate flow rate = 5,000 lb/hr.

Start at the Upstream Pressure line at 100 psig. Make a straight line through the End (Downstream) Pressure of 0 psig and stop at the pivot line. From that point, make a straight line through the Condensate Flow Rate of 5,000 and stop at the Nominal Pipe size line. It intersects slightly higher than 4". You may select the 4" line size without concern for undersizing the line because a low velocity of 50 ft/sec was used.

Note: If design requirements dictate using a velocity other than the 50 ft/sec value in the Nomograph, a ratio can be made of the pipe size because the velocity is proportional to the Pipe Diameter

STEAM TRACING DESIGN GUIDELINES

V.1.1 INTRODUCTION

Steam tracing is one of many ways to preheat, add heat and prevent heat loss from piping systems and their components. Some other ways are:

- Jacketed piping
- ✤ Hot water and oil tracing
- Dowtherm tracing

Jacketed piping systems are used primarily to maintain a constant high temperature. Due to its high cost of construction, jacketed systems are seldom used except where temperature control is critical. Hot water and oil must be pumped at a high velocity to maintain a desired temperature, and must have a separate return header as does Dowtherm. Hot water, oil or dowtherm are also an additional system which add to the cost of a plant.

Steam tracing is most often selected because:

- There is generally available a surplus of low and/or medium pressure steam.
- Steam has a high latent heat and heat-transfer-coefficient.
- Steam condenses at a constant temperature.
- Steam flows to end-point without the aid of pumps (when designed correctly).
- A small amount of return piping is needed due to existing condensate headers.

V.1.2 USES

Freeze Protection (winterizing)

 Adding sufficient heat to abovegrade piping systems and equipment which are exposed to ambient temperatures below the freezing point of their media prevents freezing. Maintaining A Desired Temperature

- The viscosity of some liquids becomes higher as their temperatures become lower causing more difficult and costly pumping and leading to down-time for cleaning.
- Condensation may occur in some gases if the ambient temperature falls below the dewpoint which is harmful and expensive in such systems as:
- -Natural Gas where control valves freeze up and burners malfunction.
- -Compressor Suction Lines where compressors can be damaged.

V.1.3 MATERIAL

Steam tracing material is normally as follows:

-Use the material specified for steam piping from the steam header (through the distribution manifold, if applicable) to and including the tracer block valve.

-Use 1/4" through 7/8" O.D. copper or stainless steel tubing (depending on the design conditions) from the block valve to the steam trap. Though sizes may vary with different applications, 3/8" and 1/2" O.D. are the most often used. Tube fittings and adapters are normally flareless compression type or 37 degree flared type.

-Use the material specified for condensate piping from the steam trap (through the collection manifold, if applicable) to the condensate header or end-point (drain or grade).

V.1.4 DESIGN GUIDELINES

- Steam piping should be run within 12" of the line or equipment being traced to minimize exposed tubing.
- 2. Spiral tracing should be limited to vertical piping using multiple tracers on horizontal lines which require more heat.

- Tracers should be designed so that the flow is always down.
 Avoid pockets! Where vertical flow is unavoidable, steam pressure should be a minimum of 25 PSIG for every 10' of rise.
- 4. Tracers should be a maximum of 100' long and continuous from the supply to the collection manifold or endpoint. For lines over 100' long, provide another tracer and overlap the two 3 inches to avoid cold spots.
- 5. Tracers should have no branch tees except as indicated in *Section V.3.*
- **6.** Provide each tracer with a separate strainer and steam trap.
- 7. Manifolds can be horizontal or vertical depending upon the design conditions.
- Tracers should be attached to the pipe at 8" to 10" maximum intervals with stainless steel wire. Wire tension should be sufficient to hold the tracer secure and flush against the pipe.
- 9. Some piping materials, such as lined pipe, might require spacer blocks to avoid "hot spots".
- **10.** Tracer loops with unions are necessary:
 - when joining tubing lengths.
 - at all break flanges and unions.
 - at all flanged valves.
- **11.** Tracer discharge lines should be as short as possible since long discharge lines can freeze even with a fully functioning steam trap.

CLEAN STEAM DESIGN GUIDELINES

Clean Steam is a general term used to describe a range of steam pureness. It may be generated by such methods as:

- Filtration of plant steam typically requiring the removal of particles larger than 5 microns
- An independent steam generator.
 E.g. Stainless steel reboiler fed with distilled water.
- One stage of a multi-effect still within the overall water purification system.

Uses for Clean Steam vary by industry, however typical applications include:

- In-line sterilization of storage tanks and equipment
- Powering sterilizers and autoclaves
- Cleaning and sterilizing process piping systems without disassembling the piping system commonly known as CIP (Clean in Place)
- Pasteurization utilizing Ultra High Temperature Processing (UHT)

The highest quality clean steam however, is typically used by the Pharmaceutical and Biotechnical industries. This steam, occasionally referred to as "Pure Steam", is most often supplied by an independent steam generator utilizing Water for Injection (WFI) as feed water. WFI is typically produced by a Reverse Osmosis (RO) generator and then distilled thus removing any traces of organics, bacteria, and pyrogens. Pure steam is required for the sterilization of cell culture processing equipment such as incubators where contaminants could adversely affect cell growth. Other uses include pharmaceutical manufacture and direct steam injection pasteurization where contaminants could collect in products intended for human consumption.

Clean steam produced from high purity make up water is highly corrosive due to the minimal ion content. High purity water, pure steam and the resultant condensate will aggressively attempt to absorb or leach ions from their environment to achieve a more natural balance. Additionally, chemicals used to passi-vate steam and condensate in conventional systems are generally prohibited from clean steam system as such chemicals could contaminate or alter sensitive end products. Should corrosion begin, the oxidation byproducts may travel through the steam system catalyzing corrosion throughout in a process known as 'rouging'.

To combat the corrosive nature of clean steam, design practices require piping, fittings and valving to be comprised of corrosion resistant materials. Current industry accepted materials include 304L, 316 and 316L stainless steel and higher alloys such as Inconel. While these materials have proven themselves in practice, it should be noted that there are currently no U.S. governmental standards specifying materials for clean steam service. Regulatory agencies concern themselves with the purity and quality of the product, leaving the design standards entirely up to the manufacturer.

In addition to the use of corrosion resistant materials in sanitary systems, features designed to inhibit bacterial growth are often required. Piping, valves and fittings should be free draining and maintain industry standard surface finishes. Free draining valves and fittings are designed not to retain or 'Puddle' condensate when installed correctly. After shut down of the steam system, any puddled condensate could potentially promote bacterial growth. Inadequate surface finishes reduce the effectiveness of system sterilization techniques, increasing the possibility of bacterial contamination. Industry standard surface finishes are measured in micro inches, the lower the number the smoother, and are expressed as an arithmetic average (Ra). Typical industry specified surface finishes range from 32 to 10 µ in. Ra.

PIPING & TRAPPING DESIGN GUIDELINES

- 1. Extra care should be taken for expansion stresses due to the higher coefficient of expansion for stainless steel.
- Branch connections are to be made from the top of headers with the block valve as close as possible to the header.
- 3. The recommended types of branch connections are tees and reducing tees.
- Steam lines should slope down to traps (recommended 1% min.).
- A dirt leg with trap station is recommended at every change of elevation (no undrainable pockets).
- 6. Extra care should be taken in pipe supports to eliminate sagging.

- Instruments in general should be kept to a minimum. However, where required, it is recommended that:
 - A) All are installed in tees.
 - B) Pressure gauges be installed with diaphragm seals.
 - C) Flow meters be installed in the vertical flow-up position to eliminate pockets
 - D) Pressure reducing stations be kept to a minimum.
- 8. Traps should be installed in the vertical flow-down position to eliminate pockets.
- 9. Trap block valves should be located as close as possible to the user.
- Condensate lines should be sloped (recommended 1% min.) to the end point. Note that contaminated condensate should always be piped to a process sewer. Uncontaminated condensate (from drip legs) may be recovered, if cost effective, and used elsewhere in the plant (not as Clean Steam make-up).
- Condensate terminal points should contain an air break (2" or 2 pipe diameters, whichever is greater) between the end of the pipe and the drain, floor or grade.
- 12. Test connections for traps are recommended-trap efficiency is essential for Clean Steam.

SIZING ELIMINATOR STEAM SEPARATORS

SIZING FOR STEAM APPLICATIONS

Using your system pressure and capacity, select a size from the Pressure Drop Tables below that will yield a pressure drop in **boldface** type. This will provide the most efficient separation with velocities between 30 and 100 ft/s for sizes up to 2½" and between 30 and 90 ft/s for sizes 3" and above.

EXAMPLE

For a system under 400 PSIG with a capacity of 500#/hr, a 1/2" or 3/4" separator is recommended.

- a. A 1/2" separator will provide a 1.86 PSIG pressure drop.
- b. A 3/4" separator will provide a 0.59 PSIG pressure drop.

ELIMINATOR PRESSURE DROP TABLES – STEAM

1/2 INCH ELIMINATOR

" /UD	PRESSURE (PSIG)										
#/HR	25	50	75	100	200	300	400	500	600		
100	0.71	0.45	0.33	0.26	0.15	0.1	0.07	0.06	0.05		
200	2.83	1.8	1.32	1.05	0.62	0.39	0.3	0.24	0.2		
300	6.37	4.04	2.97	2.36	1.39	0.88	0.67	0.54	0.46		
400	11.33	7.18	5.28	4.19	2.47	1.56	1.19	0.96	0.81		
500	17.7	11.22	8.26	6.55	3.86	2.44	1.86	1.5	1.27		
600	25.49	16.16	11.89	9.43	5.55	3.52	2.69	2.16	1.82		

1 INCH ELIMINATOR

				PRI	ESSURE	(PSIG)			
#/HR	25	50	75	100	200	300	400	500	600
300	0.76	0.48	0.35	0.28	0.17	0.1	0.08	0.06	0.05
500	2.11	1.34	0.98	0.78	0.46	0.29	0.22	0.18	0.15
700	4.13	2.62	1.93	1.53	0.9	0.57	0.44	0.35	0.3
900	6.83	4.33	3.19	2.53	1.49	0.94	0.72	0.58	0.49
1100	10.21	6.47	4.76	3.78	2.22	1.41	1.08	0.87	0.73
1300	14.26	9.04	6.65	5.27	3.11	1.97	1.5	1.21	1.02
1500	18.98	12.03	8.85	7.02	4.14	2.62	2	1.61	1.36

1-1/2 INCH ELIMINATOR

# /UD	PRESSURE (PSIG)										
#/HR	25	50	75	100	200	300	400	500	600		
400	0.24	0.15	0.11	0.09	0.05	0.03	0.03	0.02	0.02		
500	0.37	0.24	0.17	0.14	0.08	0.05	0.04	0.03	0.03		
1000	1.49	0.95	0.7	0.55	0.33	0.21	0.16	0.13	0.11		
2000	5.98	3.79	2.79	2.21	1.3	0.82	0.63	0.51	0.43		
3000	13.45	8.52	6.27	4.97	2.93	1.86	1.42	1.14	0.96		
4000	23.91	15.16	11.15	8.84	5.21	3.3	2.52	2.03	1.71		

2-1/2 INCH ELIMINATOR

		PRESSURE (PSIG)									
#/HR	25	50	75	100	200	300	400	500	600		
1000	0.27	0.17	0.12	0.1	0.06	0.04	0.03	0.02	0.02		
2000	1.07	0.68	0.5	0.39	0.23	0.15	0.11	0.09	0.08		
3000	2.4	1.52	1.12	0.89	0.52	0.33	0.25	0.2	0.17		
4000	4.27	2.71	1.99	1.58	0.93	0.59	0.45	0.36	0.31		
5000	6.68	4.23	3.11	2.47	1.45	0.92	0.7	0.57	0.48		
6000	9.61	6.09	4.48	3.55	2.09	1.33	1.01	0.82	0.69		
7000	13.08	8.29	6.1	4.84	2.85	1.81	1.38	1.11	0.94		

4 INCH ELIMINATOR

#/UD				PRI	ESSURE	E (PSIG)			
#/HR	25	50	75	100	200	300	400	500	600
4000	0.6	0.38	0.28	0.22	0.13	0.08	0.06	0.05	0.04
6000	1.34	0.85	0.63	0.5	0.29	0.19	0.14	0.11	0.1
8000	2.39	1.51	1.11	0.88	0.52	0.33	0.25	0.2	0.17
10000	3.73	2.37	1.74	1.38	0.81	0.51	0.39	0.32	0.27
12000	5.37	3.41	2.51	1.99	1.17	0.74	0.57	0.46	0.38
14000	7.32	4.64	3.41	2.71	1.59	1.01	0.77	0.62	0.52
16000	9.55	6.06	4.46	3.53	2.08	1.32	1.01	0.81	0.68

3/4 INCH ELIMINATOR

#/HR	25	50	75	PRI 100	ESSURE	E (PSIG) 300	400	500	600
100	0.22	0.14	0.1	0.08	0.05	0.03	0.02	0.02	0.02
200	0.89	0.57	0.42	0.33	0.19	0.12	0.09	0.08	0.06
300	2.01	1.27	0.94	0.74	0.44	0.28	0.21	0.17	0.14
400	3.57	2.26	1.66	1.32	0.78	0.49	0.38	0.3	0.25
500	5.57	3.53	2.6	2.06	1.21	0.77	0.59	0.47	0.4
600	8.02	5.09	3.74	2.97	1.75	1.11	0.85	0.68	0.57

1-1/4 INCH ELIMINATOR

#/110		PRESSURE (PSIG)									
#/HR	25	50	75	100	200	300	400	500	600		
500	0.69	0.44	0.32	0.26	0.15	0.1	0.07	0.06	0.05		
750	1.56	0.99	0.73	0.58	0.34	0.22	0.16	0.13	0.11		
1100	3.36	2.13	1.57	1.24	0.73	0.46	0.35	0.29	0.24		
1250	4.34	2.75	2.02	1.6	0.95	0.6	0.46	0.37	0.31		
1500	6.25	3.96	2.91	2.31	1.36	0.86	0.66	0.53	0.45		
1750	8.5	5.39	3.97	3.14	1.85	1.17	0.9	0.72	0.61		
2000	11.11	7.04	5.18	4.11	2.42	1.53	1.17	0.94	0.79		

2 INCH ELIMINATOR

#/110		PRESSURE (PSIG)									
#/HR	25	50	75	100	200	300	400	500	600		
1000	0.54	0.34	0.25	0.2	0.12	0.07	0.06	0.05	0.04		
2000	2.17	1.37	1.01	0.8	0.47	0.3	0.23	0.18	0.16		
3000	4.88	3.09	2.28	1.8	1.06	0.67	0.51	0.41	0.35		
4000	8.67	5.5	4.04	3.21	1.89	1.2	0.91	0.74	0.62		
5000	13.55	8.59	6.32	5.01	2.95	1.87	1.43	1.15	0.97		
6000	19.51	12.37	9.1	7.22	4.25	2.69	2.06	1.66	1.4		

3 INCH ELIMINATOR

#/UD		PRESSURE (PSIG)									
#/HR	25	50	75	100	200	300	400	500	600		
2000	0.45	0.28	0.21	0.17	0.1	0.06	0.05	0.04	0.03		
4000	1.79	1.13	0.83	0.66	0.39	0.25	0.19	0.15	0.13		
6000	4.02	2.55	1.87	1.49	0.88	0.55	0.42	0.34	0.29		
8000	7.15	4.53	3.33	2.64	1.56	0.99	0.75	0.61	0.51		
10000	11.17	7.08	5.21	4.13	2.43	1.54	1.18	0.95	0.8		
12000	16.08	10.19	7.5	5.95	3.5	2.22	1.69	1.37	1.15		
14000	21.89	13.87	10.21	8.09	4.77	3.02	2.31	1.86	1.56		
1											

6 INCH ELIMINATOR

# /UD		(PSIG)							
#/HR	25	50	75	100	200	300	400	500	600
5000	0.18	0.11	0.08	0.07	0.04	0.02	0.02	0.02	0.01
10000	0.72	0.46	0.33	0.27	0.16	0.1	0.08	0.06	0.05
15000	1.62	1.02	0.75	0.6	0.35	0.22	0.17	0.14	0.12
20000	2.87	1.82	1.34	1.06	0.63	0.4	0.3	0.24	0.21
25000	4.49	2.85	2.09	1.66	0.98	0.62	0.47	0.38	0.32
30000	6.46	4.1	3.01	2.39	1.41	0.89	0.68	0.55	0.46
35000	8.8	5.58	4.1	3.25	1.92	1.21	0.93	0.75	0.63

SIZING ELIMINATOR STEAM SEPARATORS

SIZING FOR AIR APPLICATIONS

Using your system pressure and capacity, select a size from the Pressure Drop Tables below that will yield a pressure drop in **boldface** type. This will provide the most efficient separation with velocities between 8 and 60 ft/s for sizes up to 2½" and between 8 and 50 ft/s for sizes 3" and above.

EXAMPLE

For a system under 400 PSIG with a capacity of 500 SCFM, a 2" or 2%" separator is recommended.

- a. A 2" separator will provide a 0.12 PSIG pressure drop.
- b. A 2¹/₂" separator will provide a 0.06 PSIG pressure drop.

ELIMINATOR PRESSURE DROP TABLES – AIR

1/2 INCH ELIMINATOR

				PRI	ESSURE	E (PSIG)			
SCFM	25	50	75	100	200	300	400	500	600
10	0.07	0.04	0.03	0.02	0.01	0.01	0.01	0.01	0
20	0.27	0.17	0.12	0.09	0.05	0.03	0.03	0.02	0.02
30	0.61	0.37	0.27	0.21	0.11	0.08	0.06	0.05	0.04
40	1.08	0.66	0.48	0.37	0.2	0.14	0.1	0.08	0.07
50	1.69	1.03	0.75	0.58	0.31	0.21	0.16	0.13	0.11
60	2.43	1.49	1.07	0.84	0.45	0.31	0.23	0.19	0.16

1 INCH ELIMINATOR

0.0514				PRI	ESSURE	(PSIG)			
SCFM	25	50	75	100	200	` 300 <i>´</i>	400	500	600
25	0.05	0.03	0.02	0.02	0.01	0.01	0	0	0
50	0.2	0.12	0.09	0.07	0.04	0.03	0.02	0.02	0.01
75	0.45	0.28	0.2	0.16	0.08	0.06	0.04	0.03	0.03
100	0.8	0.49	0.36	0.28	0.15	0.1	0.08	0.06	0.05
125	1.26	0.77	0.56	0.43	0.23	0.16	0.12	0.1	0.08
150	1.81	1.11	0.8	0.63	0.33	0.23	0.17	0.14	0.12

1-1/2 INCH ELIMINATOR

0.0514				PRI	ESSURE	(PSIG)			
SCFM	25	50	75	100	200	300	400	500	600
50	0.04	0.02	0.02	0.01	0.01	0	0	0	0
100	0.14	0.09	0.06	0.05	0.03	0.02	0.01	0.01	0.01
150	0.32	0.2	0.14	0.11	0.06	0.04	0.03	0.02	0.02
200	0.57	0.35	0.25	0.2	0.11	0.07	0.05	0.04	0.04
250	0.89	0.55	0.39	0.31	0.16	0.11	0.09	0.07	0.06
300	1.28	0.79	0.57	0.44	0.24	0.16	0.12	0.1	0.08

2-1/2 INCH ELIMINATOR

0.0514				PRI	ESSURE	E (PSIG)			
SCFM	25	50	75	100	200	300	400	500	600
100	0.03	0.02	0.01	0.01	0	0	0	0	0
250	0.16	0.1	0.07	0.06	0.03	0.02	0.02	0.01	0.01
500	0.64	0.39	0.28	0.22	0.12	0.08	0.06	0.05	0.04
750	1.43	0.88	0.63	0.5	0.26	0.18	0.14	0.11	0.09
1000	2.54	1.56	1.13	0.88	0.47	0.32	0.24	0.2	0.16
1250	3.97	2.44	1.76	1.38	0.73	0.5	0.38	0.31	0.26

4 INCH ELIMINATOR

				PRE	ESSURE	(PSIG)			
SCFM	25	50	75	100	200	` 300 <i>´</i>	400	500	600
250	0.02	0.01	0.01	0.01	0	0	0	0	0
500	0.09	0.05	0.04	0.03	0.02	0.01	0.01	0.01	0.01
1000	0.36	0.22	0.16	0.12	0.07	0.04	0.03	0.03	0.02
1500	0.8	0.49	0.35	0.28	0.15	0.1	0.08	0.06	0.05
2000	1.42	0.87	0.63	0.49	0.26	0.18	0.14	0.11	0.09
2500	2.22	1.36	0.98	0.77	0.41	0.28	0.21	0.17	0.14

3/4 INCH ELIMINATOR

SCFM	25	50	75	PRI 100	ESSURE 200	E (PSIG) 300	400	500	600					
10	0.02	0.01	0.01	0.01	0	0	0	0	0					
25	0.13	0.08	50 75 100 200 300 400 500 600 0.01 0.01 0.01 0											
50	0.53	0.33	0.01 0.01 0.01 0											
70	1.04	0.64	0.46	0.36	0.19	0.13	0.1	0.08	0.07					
90	1.72	1.05	0.76	0.59	0.32	0.22	0.16	0.13	0.11					
110	2.57	1.58	1.14	0.89	0.47	0.32	0.25	0.2	0.17					

1-1/4 INCH ELIMINATOR

				PRI	ESSURE	E (PSIG)			
SCFM	25	50	75	100	200	300	400	500	600
50	0.07	0.04	0.03	0.02	0.01	0.01	0.01	0.01	0
100	0.26	0.16	0.12	0.09	0.05	0.03	0.03	0.02	0.02
150	0.59	0.37	0.26	0.21	0.11	0.08	0.06	0.05	0.04
200	1.06	0.65	0.47	0.37	0.2	0.13	0.1	0.08	0.07
250	1.65	1.01	0.73	0.57	0.31	0.21	0.16	0.13	0.11
300	2.38	1.46	1.05	0.82	0.44	0.3	0.23	0.18	0.15

2 INCH ELIMINATOR

				PRI	ESSURE	E (PSIG)									
SCFM	25														
100	0.05	0.03	0.02	0.02	0.01	0.01	0	0	0						
200	0.21	0.13	0.09	0.07	0.04	0.03	0.02	0.02	0.01						
300	0.46	0.29	0.21	0.16	0.09	0.06	0.04	0.04	0.03						
400	0.83	0.51	0.37	0.29	0.15	0.1	0.08	0.06	0.05						
500	1.29	0.79	0.57	0.45	0.24	0.16	0.12	0.1	0.08						
600	1.86	0.79 0.57 0.45 0.24 0.16 0.12 0.1 0.08 1.14 0.82 0.64 0.34 0.23 0.18 0.14 0.12													

3 INCH ELIMINATOR

0.0514				PRI	ESSURE	E (PSIG)			
SCFM	25	50	75	100	200	300	400	500	600
200	0.04	0.03	0.02	0.01	0.01	0.01	0	0	0
400	0.17	0.1	0.08	0.06	0.03	0.02	0.02	0.01	0.01
600	0.38	0.23	0.17	0.13	0.07	0.05	0.04	0.03	0.02
800	0.68	0.42	0.3	0.24	0.13	0.09	0.07	0.05	0.04
1000	1.06	0.65	0.47	0.37	0.2	0.13	0.1	0.08	0.07
1200	1.53	0.94	0.68	0.53	0.28	0.19	0.15	0.12	0.1

6 INCH ELIMINATOR

0.0514				PRI	ESSURE	E (PSIG)								
SCFM	25	.02 0.01 0.01 0.01 0 0 0 0 0 .07 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0												
500	0.02	0.01	0.01	0.01	0	0	0	0	0					
1000	0.07	0.04	0.03	0.02	0.01	0.01	0.01	0.01	0					
2000	0.27	0.17	0.12	0.09	0.05	0.03	0.03	0.02	0.02					
3000	0.62	0.38	0.27	0.21	0.11	0.08	0.06	0.05	0.04					
4000	1.09	0.67	0.48	0.38	0.2	0.14	0.1	0.08	0.07					
5000	1.71	1.05	0.76	0.59	0.32	0.22	0.16	0.13	0.11					

TECHNICAL Reference

Clean Steam is high purity steam that is sterile and pyrogen free. It is used by hospitals and research institutions as well as in the Pharmaceutical, Biotechnical, Electronics, Food and Cosmetics Industries. *NICHOLSON* has become an innovator in Clean Steam applications through extensive research and development, working closely with major engineering firms in the pharmaceutical and biotechnical industries throughout the United States. From revolutionary new designs such as the CDH Series to the value oriented DS100 Series, *NICHOLSON* innovations set the standard for Clean Steam management. h = Total heat of steam, Btu per pound

v = Specific volume, cubic feet per pound

Pres-	Temper-		Satur-	Satur-						TOTAL	. TEMPER	ATURE, °F	-				
sure	ature F°		ated	ated													
psi (gage)	(sat.)		Liquid	Vapor	220	240	260	280	300	320	340	360	380	400	420	440	460
0	212	h	180.1	1150.4	1154.4	1164.2	1173.8	1183.3	1192.8	1202.3	1211.7	1221.1	1230.5	1239.9	1249.3	1258.8	1268.2
		V	0.0167 196.2	26.80 1156.3	27.15	28.00 1162.3	28.85	29.70	30.53 1191.6	31.37 1201.2	32.20 1210.8	33.03 1220.3	33.85 1229.7	34.68 1239.2	35.50 1248.7	36.32 1258.2	37.14 1267.6
5	228	h v	0.0168	20.089		20.48	1172.2 21.11	1182.0 21.74	22.36	22.98	23.60	24.21	24.82	25.43	26.04	26.65	27.25
10	240	h	208.4	1160.6			1170.7	1180.6	1190.5	1200.2	1209.8	1219.4	1229.0	1238.5	1248.1	1257.6	1267.1
10	240	v	0.0169	16.303			16.819	17.330	17.836	18.337	18.834	19.329	19.821	20.31	20.80	21.29	21.77
15	250	h	218.8	1164.1			1169.1	1179.3	1189.3	1199.1	1208.9	1218.6	1228.3	1237.9	1247.5	1257.0	1266.6
		v h	0.0170	13.746 1167.1			13.957 1167.5	14.390 1177.9	14.816 1188.1	15.238 1198.1	15.657 1208.0	16.072 1217.8	16.485 1227.5	16.897 1237.2	17.306 1246.8	17.714 1256A	18.121 1266.1
20	259	v	0.0171	11.898			11.911	12.288	12.659	13.025	13.387	13.746	14.103	14.457	14.810	15.162	15.512
0.5	0/7	h	236.0	1169.7				1176.5	1186.8	1197.0	1207.0	1216.9	1226.7	1236.5	12462	1255.9	1265.5
25	267	v	0.0171	10.498				10.711	11.040	11.364	11.684	12.001	12.315	12.628	12.938	13.247	13.555
30	274	h	243.4	1172.0				1175.0	1185.6	1195.9	1206.0	1216.0	1225.9	1235.8	1245.6	1255.3	1265.0
		v	0.0172	9.401				9.484	9.781	10.072	10.359	10.643	10.925	11.204	11.482	11.758	120033
40	287	h v	256.3 0.0173	1175.9 7.787					1183.0 7.947	1193.6 8.192	1204.0 8.432	1214.3 8.668	1224.4 8.902	1234.3 9.134	1244.3 9.364	1254.1 9.592	1263.9 9.819
		v h	267.5	1179.1					1180.3	8.192	8.432	8.668	8.902	9.134	9.364	9.592	9.819
50	298	n v	0.0174	6.655					6.676	6.889	7.096	7.300	7.501	7.700	7.896	8.091	8.285
		h	277.4	1181.9						1188.9	1199.9	1210.6	1221.1	1231.4	1241.6	1251.7	1261.7
60	308	v	0.0175	5.816						5.9321	6.116	6.296	6.473	6.648	6.820	6.991	7.161
70	316	h	286.4	1184.2						1186.4	1197.7	1208.7	1219.4	1229.9	1240.2	1250.4	1260.6
/0	310	v	0.0176	5.168						5.200	5.366	5.528	5.687	5.843	5.997	6.150	6.301
80	324	h	294.6	1186.2							1195.5	1206.7	1217.7	1228.3	1238.8	1249.2	1259.4
		V	0.0177	4.652							4.773	4.921	5.065	5.207	5.347	5.485	5.621
90	331	h v	302.1 0.0178	1188.1 4.232							1193.2 4.292	1204.7 4.429	1215.9 4.562	1226.7 4.693	1237.4 4.821	1247.9 4.947	1258.2 5.071
		h	309.1	1189.7							1190.8	1202.7	1214.1	1225.2	1236.0	1246.6	1257.1
100	338	v	0.0178	3.882							3.895	4.022	4.146	4.267	4.385	4.502	4.617
125	353	h	324.8	1193.0								1197.3	1209.4	1211.1	1232.3	1243.3	1254.1
125	355	v	0.0180	3.220								3.258	3.365	3.468	3.569	3.667	3.764
150	366	h	338.5	1195.6									1204.5	1216.7	1228.4	1239.8	1251.0
		V	0.0182 350.8	2.752 1197.6									2.818 1199.3	2.910 1212.2	2.998 1224.5	3.085 1236.3	3.169 1247.8
175	378	h v	0.0183	2.404									2.414	2.498	2.577	2.655	2.730
		h	361.9	1199.3										1207.4	1220.3	1232.6	1244.5
200	388	v	0.0185	2.134										2.180	2.253	2.324	2.393
225	397	h	372.1	1200.6										1202.5	1216.0	1228.8	1241.1
	577	v	0.0186	1.9183										1.9276	1.9964	2.062	2.126
250	406	h	381.6	1201.7											1211.5	1224.9	1237.6
		v h	0.0187 390.5	1.7422 1202.6											1.7870 1206.8	1.8488 1220.8	1.9081 1234.0
275	414	v	0.0188	1.5954											1.6130	1220.8	1234.0
		h	398.8	1203.2												1216.5	1230.3
300	422	v	0.0190	1.4711												1.5222	1.5755
350	436	h	414.1	1204.1												1207.5	1222.4
		v	0.0192	1.2720												1.2831	1.3326
400	448	h	428.1	1204.6													1214.0
		V h	0.0194 440.9	1.1194 1204.6													1.1468
450	460	h V	440.9 0.0196	0.9985													
		ĥ	452.9	1204.2													
500	470	v	0.0198	0.9004			_				_						
550	480	h	464.1	1203.7													
	.00	v	0.0200	0.8191													
600	489	h	474.7	1203.0													
		۷	0.0202	0.7503													

*Adapted with permission from "Thermodynamic Properties of Steam", Keenan and Keyes, published by John Wiley & Sons, Inc.

STEAM TABLE*

h = Total heat of steam, Btu per pound

v = Specific volume, cubic feet per pound

						TOTA	L TEMPE	RATURE, [°]	°F							Temp-	Pres-
480	500	520	540	560	580	600	620	640	660	680	700	720	740	750		erature °F (sat.)	sure psi (gage)
1277.6 37.96	1287.1 38.78	1296.6 39.60	1306.2 40.41	1315.7 41.23	1325.3 42.04	1334.8 42.86	1344.5 43.68	1354.2 44.49	1363.8 45.31	1373.5 46.12	1383.2 46.94	1393.0 47.75	1402.8 48.56	1407.7 48.97	h v	212	
1277.1 27.86	1286.6 28.46	1296.2 29.06	1305.7 29.67	1315.3 30.27	1324.8 30.87	1334.4 31.47	1344.1 32.07	1353.8 32.67	1363.5 33.27	1373.2 33.87	1382.9 34.47	1392.7 35.07	1402.6 35.67	1407.5 35.96	h v	228	5
1276.6 22.26	1286.2 22.74	1295.8 23.22	1305.3 23.71	1314.9 24.19	1324.5 24.68	1334.1 25.16	1343.8 25.64	1353.5 26.12	1363.2 26.60	1372.9 27.08	1382.6 27.56	1392.5 28.04	1402.3 28.52	1407.2 28.76	h v	240	10
1276.2	1285.7	1295.3	1304.9	1314.5	1324.2	1333.8	1343.5	1353.2	1362.9	1372.6	1382.4	1392.3	1402.1	1407.0	h	250	15
18.528 1275.7	18.933 1285.3	19.337 1294.9	19.741 1304.5	20.144 1314.1	20.547 1323.8	20.95 1333.5	21.35 1343.2	21.75 1352.9	22.15 1362.6	22.56 1372.3	22.96 1382.1	23.36 1391.9	23.76 1401.8	23.96 1406.7	v h	259	20
15.862 1275.2	16.210 1284.8	16.558 1294.5	16.905 1304.1	17.251 1313.8	17.597 1323.4	17.943 1333.1	18.288 1342.8	18.633 1352.5	18.977 1362.3	19.322 1372.1	19.666 1381.9	20.01 1391.7	20.35 1401.6	20.52 1406.5	v h	267	25
13.862 1274.7	14.168 1284.4	14.473 1294.0	14.778 1303.7	15.082 1313.4	15.385 1323.1	15.688 1332.8	15.990 1342.5	16.293 1352.2	16.595 1362.0	16.896 1371.8	17.198 1381.6	17.499 1391.5	17.8001 1401.4	7.951 1406.3	v h		
12.307	12.580	12.852	13.123	13.394	13.665	13.935	14.204	14.473	14.742	15.011	15.279	15.547	15.815	15.949	v	274	30
1273.7 10.044	1283.4 10.269	1293.2 10.493	1302.9 10.717	1312.6 10.940	1322.4 11.162	1332.1 11.384	1341.9 11.605	1351.7 11.826	1361.5 12.047	1371.3 12.268	1381.1 12.488	1391.0 12.708	1400.9 12.927	1405.8 13.037	h v	287	40
1272.7 8.478	1282.5 8.670	1292.3 8.861	1302.1 9.051	1311.9 9.240	1321.7 9.429	1331.5 9.618	1341.3 9.806	1351.1 9.993	1360.9 10.181	1370.8 10.368	1380.6 10.555	1390.5 10.741	1400.4 10.928	1405.4 11.021	h v	298	50
1271.6 7.329	1281.5 7.496	1291.4 7.663	1301.3 7.829	1311.1 7.994	1321.0 8.159	1330.8 8.323	1340.6 8.486	1350.5 8.649	1360.3 8.812	1370.2 8.975	1380.1 9.138	1390.0 9.300	1399.9 9.462	1404.9 9.543	h v	308	60
1270.6 6.450	1280.6 6.599	1290.5 6.747	1300.5 6.894	1310.4 7.041	1320.2 7.187	1330.1 7.332	1340.0 7.477	1349.9 7.622	1359.8 7.766	1369.7 7.910	1379.6 8.054	1389.6 8.198	1399.5 8.341	1404.5 8.413	h v	316	70
1269.5	1279.6	1289.6	1299.6	1309.6	1319.5	1329.4	1339.4	1349.3	1359.3	1369.2	1379.1	1389.1	1399.0	1404.0	h	324	80
5.756 1268.5	5.891 1278.6	6.024 1288.7	6.156 1298.8	6.288 1308.8	6.419 1318.8	6.550 1328.7	6.680 1338.7	6.810 1348.7	6.940 1358.6	7.069 1368.6	7.199 1378.5	7.327 1388.5	7.456 1398.5	7.520 1403.5	v h	331	90
5.195 1267.4	5.317 1277.7	5.439 1287.8	5.559 1297.9	5.679 1308.0	5.799 1318.0	5.918 1328.1	6.036 1338.1	6.154 1348.0	6.272 1358.0	6.389 1368.0	6.506 1378.0	6.623 1388.1	6.740 1398.1	6.798 1403.1	v h		
4.730	4.843	4.955	5.066 1295.8	5.176	5.285	5.394 1326.4	5.503 1336.5	5.611	5.719	5.827	5.934	6.041 1386.9	6.148 1397.0	6.201	v	338	100
1264.7 3.860	1275.2 3.954	1285.5 4.047	4.140	1306.0 4.232	1316.2 4.323	4.413	4.503	1346.6 4.593	1356.6 4.683	1366.7 4.772	1376.8 4.861	4.949	5.038	1402.0 5.082	h v	353	125
1261.9 3.252	1272.6 3.334	1283.2 3.414	1293.6 3.494	1304.0 3.573	1314.3 3.652	1324.6 3.730	1334.8 3.807	1345.0 3.884	1355.2 3.960	1365.3 4.037	1375.4 4.113	1385.6 4.188	1395.8 4.264	1400.8 4.301	h v	366	150
1259.0 2.804	1270.0 2.877	1280.8 2.948	1291.4 3.019	1302.0 3.089	1312.4 3.157	1322.8 3.226	1333.2 3.294	1343.5 3.361	1353.7 3.429	1363.9 3.495	1374.2 3.562	1384.4 3.628	1394.6 3.694	1399.7 3.727	h v	378	175
1256.0 2.460	1267.3 2.525	1278.3 2.590	1289.2 2.653	1299.9 2.716	1310.5 2.777	1321.0 2.839	1331.4 2.900	1341.8 2.960	1352.2 3.019	1362.5 3.079	1372.8 3.139	1383.1 3.198	1393.3 3.256	1398.5 3.286	h v	388	200
1253.0	1264.5	1275.8	1286.9	1297.8	1308.5	1319.2	1329.8	1340.3	1350.7	1361.1	1371.5	1381.9	1392.2	1397.3	h	397	225
2.187 1249.9	2.247 1261.7	2.306 1273.2	2.364 1284.5	2.421 1295.6	2.477 1306.5	2.533 1317.3	2.587 1328.0	2.642 1338.7	2.696 1349.2	2.750 1359.7	2.804 1370.2	2.857 1380.6	2.910 1391.0	2.936 1396.2	v h	406	
1.9654 1246.6	2.021 1258.8	2,076 1270.6	2.129 1282.1	2.181 1293.4	2.233 1304.5	2.284 1315.5	2.334 1326.3	2.384 1337.0	2.434 1347.7	2.483 1358.3	2.532 1368.8	2.580 1379.3	2.629 1389.8	2.653 1395.0	v h		
1.7816 1243.3	1.8338 1255.8	1.8846 1267.9	1.9342 1279.7	1.9829 1291.2	2.031 1302.5	2.078 1313.6	2.125 1324.5	2.171 1335.4	2.217	2.262 1356.8	2.307 1367.4	2.352 1378.0	2.396 1388.6	2.418 1393.8	v	414	275
1.6266	1.6759	1.7237	1.7703	1.8159	1.8607	1.9048	1.9483	1.9912	1346.1 2.034	2.076	2.118	2.159	2.200	2.220	h v	422	300
1236.4 1.3795	1249.6 1.4243	1262.4 1.4675	1274.7 1.5094	1286.6 1.5501	1298.2 1.5900	1309.7 1.6291	1320.9 1.6676	1332.0 1.7056	1343.0 1.7430	1353.9 1.7801	1364.7 1.8168	1375.4 1.8531	1386.1 1.8892	1391.4 1.9071	h v	436	350
1229.0 1.1908	1243.2 1.2325	1256.6 1.2724	1269.4 1.3108	1281.8 1.3480	1293.9 1.3842	1305.7 1.4196	1317.2 1.4544	1328.6 1.4885	1339.8 1.5222	1350.9 1.5554	1361.9 1.5883	1372.8 1.6207	1383.6 1.6529	1389.0 1.6689	h v	448	400
1221.2 1.0416	1236.3 1.0811	1250.5 1.1186	1264.0 1.1544	1276.9 1.1889	1289.4 1.2224	1301.6 1.2550	1313.5 1.2868	1325.1 1.3180	1336.5 1.3488	1347.8 1.3789	1359.0 1.4088	1370.1 1.4382	1381.1 1.4675	1386.5 1.4819	h v	460	450
1212.8	1229.0	1244.0	1258.3	1271.8	1284.8	1297.3	1309.6	1321.5	1333.2	1344.7	1356.1	1367.3	1378.4	1384.0	h	470	500
0.9204	0.9584	0.9941	1.0280 1252.4	1.0604 1266.5	1.0917 1280.0	1.1221 1293.0	1.1516 1305.6	1.1805 1317.8	1.2088 1329.8	1.2367 1341.6	1.2641 1353.2	1.2913 1364.6	1.3180 1375.8	1.3313 1381.4	v h	480	550
	0.8565 1213.2	0.8909 1230.3	0.9234 1246.1	0.9542 1261.0	0.9838 1275.1	1.0124 1288.5	1.0401 1301.5	1.0671 1314.1	1.0935 1326.3	1.1195 1338.3	1.1449 1350.2	1.1700 1361.8	1.1947 1373.2	1.2070 1378.9	v h	489	
	0.7703	0.8040	0.8353	0.8649	0.8931	0.9203	0.9465	0.9720	0.9968	1.0211	1.0450	1.0684	1.0916	1.1030	v	489	000

*Adapted with permission from "Thermodynamic Properties of Steam", Keenan and Keyes, published by John Wiley & Sons, Inc.

PRESSURE TO VACUUM PROPERTIES OF WATER

144

Gage I	ndicated	Al	osolute Pressu	lre	Water	Saturation		Weight	Specific
PSIG	Inches of Hg	PSIA	Inches of Hg	Torricelli	Temp.	Pressure	Weight	Density	Volume
-14.70000	29.92000	0.0	0.0	0.0	Deg. F	PSIA	lbs/Gallon	lbs/Cu.Ft.	Cu.Ft./lb
-14.69998	29.91996	0.00002	0.00004	0.001	32	0.0886	8.344	62.414	0.016022
-14.69996	29.91992	0.00004	0.00008	0.002	40	0.1216	8.345	62.426	0.016019
-14.69994	29.91988	0.00006	0.00012	0.003	50	0.1780	8.343	62.410	0.016023
-14.69992	29.91984	0.00008	0.00016	0.004	60	0.2561	8.338	62.371	0.016033
-14.69990	29.91980	0.00010	0.00020	0.005	70	0.3629	8.329	62.305	0.016050
-14.69981	29.91961	0.00019	0.00039	0.010	80	0.5068	8.318	62.220	0.016072
-14.69961	29.91921	0.00039	0.00079	0.020	90	0.6981	8.304	62.116	0.016099
-14.69942	29.91882	0.00058	0.00118	0.030	100	0.9492	8.288	61.996	0.016130
-14.69923	29.91843	0.00077	0.00157	0.040	110	1.2750	8.270	61.862	0.016165
-14.69903	29.91803	0.00097	0.00197	0.050	120	1.6927	8.250	61.713	0.016204
-14.69806	29.91606	0.00194	0.00394	0.100	130	2.2230	8.228	61.550	0.016247
-14.69613	29.91212	0.00387	0.00788	0.200	140	2.8892	8.205	61.376	0.016293
-14.69449	29.90818	0.00551	0.01182	0.300	150	3.7184	8.180	61.188	0.016343
-14.69226	29.90424	0.00774	0.01576	0.400	160	4.7414	8.154	60.994	0.016395
-14.69032	29.90030	0.00968	0.01970	0.500	170	5.9926	8.126	60.787	0.016451
-14.68066	29.88063	0.01934	0.03937	1.000	180	7.5110	8.097	60.569	0.016510
-14.66698	29.84126	0.03302	0.07874	2.000	190	9.340	8.067	60.343	0.016572
-14.64197	29.80189	0.05803	0.11811	3.000	200	11.526	8.035	60.107	0.016637
-14.62262	29.76252	0.07738	0.15748	4.000	210	14.123	8.002	59.862	0.016705
-14.60329	29.72315	0.09671	0.19685	5.000	212	14.696	7.996	59.812	0.016719
-14.50658	29.52630	0.19342	0.39370	10.000	220	17.186	7.969	59.613	0.016775
-14.40980	29.32940	0.29020	0.59060	15.000	240	24.968	7.898	59.081	0.016926
-14.31320	29.13260	0.38680	0.78740	20.000	260	35.427	7.823	58.517	0.017089
-14.21840	28.93570	0.48160	0.98430	25.000	280	49.200	7.743	57.924	0.017264
-14.20870	28.920	0.49130	1.000	25.400	300	67.005	7.661	57.307	0.01745
-14.11970	28.740	0.58030	1.181	30.000	350	134.604	7.431	55.586	0.01799
-13.75700	28.000	0.94330	1.920	48.770	400	247.259	7.172	53.648	0.01864
-12.28300	25.000	2.41700	4.920	124.970	450	422.55	6.880	51.467	0.01943
-10.31800	21.000	4.38200	8.920	226.570	500	680.86	6.543	48.948	0.02043
-8.84400	18.000	5.85600	11.920	302.770	550	1045.43	6.143	45.956	0.02176
-7.37000	15.000	7.320	14.920	378.970	600	1543.2	5.655	42.301	0.02364
-5.89600	12.000	8.804	17.920	455.770	650	2208.4	4.999	37.397	0.02674
-4.91300	10.000	9.787	19.920	505.970	700	3094.3	3.651	27.307	0.03662
-3.93000	8.000	10.770	21.920	556.770					
-2.94800	6.000	11.752	23.920	607.570	NOTE:				
-1.96500	4.000	12.735	25.920	658.370		of water per	gallon is bas	sed on 7.48	052 gallons
-0.98300	2.000	13.732	27.920	709.170	per cubi		C		0
-0.49100	1.000	14.209	28.920	733.570	•		ater @ 60°F	= 1 00	
-0.24600	0.500	14.454	29.420	747.270	opeeme	gravity of w		- 1.00	
	ŀ	ATMOSPHE	RIC						
0.0	0.0	14.700	29.920	760.000					
+ 0.30		15.000	30.540	775.720					
+ 1.00		15.700	31.970	811.910					
+ 2.00		16.700	34.000	863.630					
+ 10.00		24.700	50.290	277.35					
10.00		21.700	00.270	2,7.00					

CONDENSATION WARM-UP LOADS

Steam							HE	ADER	SIZE						0°F*
Pressure PSIG	2"	2 ¹ /2"	3"	4"	5"	6"	8″	10"	12"	14"	16"	18"	20"	24"	Correct Factor
1	6.4	10.2	13.3	19.0	25.7	33.3	50	71	94	111	145	184	216	301	1.50
5	7.2	11.4	14.9	21.2	28.7	37.2	56	80	105	124	163	206	241	336	1.45
10	7.8	12.4	16.2	23.0	31.2	40.5	61	86	114	135	177	224	262	365	1.41
20	8.8	14.0	18.3	26.0	35.2	45.7	69	98	129	153	200	253	296	413	1.37
40	10.3	16.4	21.4	30.5	41.3	53.6	81	114	151	179	234	296	347	484	1.32
60	11.5	18.2	23.9	34.0	46.0	59.7	90	127	169	200	261	330	387	539	1.29
80	12.5	19.8	25.9	36.9	50.0	64.8	98	138	183	217	283	358	420	585	1.27
100	13.3	21.1	27.7	39.4	53.4	69.3	104	148	195	231	302	383	449	625	1.26
125	14.3	22.6	29.6	42.2	57.2	74.2	112	158	209	248	324	410	481	670	1.25
150	15.1	24.0	31.4	44.7	60.6	78.6	118	168	222	263	343	434	509	709	1.24
175	15.9	25.2	33.0	47.0	63.7	82.7	124	176	233	276	361	457	536	746	1.23
200	16.6	26.4	34.5	49.1	66.6	86.4	130	184	244	289	377	477	560	779	1.22
250	17.9	28.5	37.3	53.0	71.9	93.3	140	199	263	312	407	515	604	842	1.21
300	26.3	40.2	53.8	78.6	109.0	150.0	228	338	464	557	716	896	1096	1555	1.20
400	29.3	44.8	59.9	87.7	121.5	167.0	254	376	517	620	798	998	1221	1733	1.19
500	32.1	48.9	65.5	95.7	132.8	182.5	277	411	566	678	872	1091	1335	1894	1.18
600	34.6	52.9	70.7	103.4	143.4	197.1	299	444	611	732	942	1179	1441	2045	1.17

Condensation loads are in pounds per hour per 100 feet of insulated steam main with ambient temperature of 70°F and an insulation efficiency of 80%.

Loads are based on Schedule 40 pipe for pressures up to and including 250 PSIG and on schedule 80 pipe for pressures above 250 PSIG.

CONDENSATION LOADS

Steam							HE	ADER	SIZE						0°F*
Pressure PSIG	2"	2 ¹ /2"	3"	4"	5"	6"	8″	10"	12"	14"	16"	18"	20"	24"	Correct Factor
1	4.6	5.5	6.6	8.3	10.1	11.8	15.1	18.6	21.8	23.8	26.9	30.1	33.2	39.4	1.40
5	5.1	6.1	7.3	9.3	11.3	13.3	16.9	20.8	24.4	26.6	30.1	33.7	37.2	44.1	1.37
10	5.7	6.8	8.2	10.3	12.6	14.8	18.9	23.2	27.2	29.7	33.7	37.6	41.5	49.3	1.34
20	6.7	8.0	9.7	12.2	14.8	17.4	22.3	27.4	32.1	35.1	39.7	44.4	49.0	58.2	1.29
40	8.4	10.0	12.0	15.1	18.4	21.7	27.7	34.1	40.0	43.6	49.5	55.3	61.0	72.5	1.24
60	9.7	11.6	13.9	17.6	21.4	25.2	32.2	39.6	46.5	50.7	57.5	64.3	71.0	84.3	1.22
80	10.9	13.0	15.6	19.7	24.0	28.2	36.2	44.4	52.2	57.0	64.6	72.2	79.7	94.7	1.20
100	11.9	14.3	17.1	21.6	26.4	31.0	39.7	48.9	57.4	62.6	71.0	79.4	87.7	104.2	1.18
125	13.2	15.7	18.9	23.8	29.1	34.2	43.8	53.9	63.3	69.1	78.4	87.6	96.8	115.0	1.17
150	14.3	17.1	20.5	25.9	31.6	37.2	47.6	58.6	68.8	75.2	85.3	95.3	105.3	125.2	1.16
175	15.3	18.3	22.0	27.8	33.9	40.0	51.2	63.0	74.0	80.9	91.7	102.6	113.3	134.7	1.15
200	16.3	19.5	23.4	29.7	36.2	42.6	54.6	67.2	78.9	86.2	97.8	109.4	120.8	143.7	1.14
250	18.2	21.8	26.2	33.1	40.4	47.6	61.1	75.2	88.3	96.5	109.5	122.4	135.3	160.8	1.13
300	20.0	23.9	28.8	36.4	44.4	52.4	67.1	82.7	97.1	106.1	120.5	134.7	148.9	177.1	1.12
400	23.4	27.9	33.6	42.5	51.9	61.2	78.6	96.8	113.8	124.3	141.1	157.8	174.5	207.6	1.11
500	26.5	31.7	38.2	48.4	59.1	69.7	89.4	110.2	129.5	141.6	160.8	179.8	198.8	236.6	1.10
600	29.6	35.4	42.6	54.0	66.0	77.8	100.0	123.2	144.9	158.4	179.8	201.2	223.5	264.8	1.09

Condensation loads are in pounds per hour per 100 feet of insulated steam main with ambient temperature of 70°F and an insulation efficiency of 80%.

Chart loads represent losses due to radiation and convection for saturated steam.

*For ambient temperature of 0°F, multiply load value by the correction factor corresponding to the steam pressure.

CONVERSION TABLES

LIQUID W	EIGHTS and ME	ASURES		CONVERSIO	ONS of P	RESSURE A	ND HEAD	
То		Multiply	То		Multiply	То		Multiply
Convert	То	By	Convert	То	By	Convert	То	By
0 "	1.11	0.7050	Lbs .per Sq .ln.	Lbs. per Sq. Ft.	144	Ins. of Mercury	Lbs. per Sq. In.	0.491154
Gallons	Liters	3.7853 231	Lbs. per Sq. In.	Atmospheres	0.06805	Ins. of Mercury	Lbs. per Sq. Ft.	70.7262
Gallons Gallons	Cu. Inches Cu. Feet	0.1337	Lbs. per Sq. In.	Ins. of Water	27.728	Ins. of Mercury	Atmospheres	0.033421
Gallons	Cu. Meters	0.1337	Lbs. per Sq. In.	Ft. of Water	2.3106	Ins. of Mercury	Ins. of Water	13.6185
Gallons	Lbs. of Water	8.339	Lbs. per Sq. In.	Ins. of Mercury	2.03602	Ins. of Mercury	Ft. of Water	1.1349
Liters	Gallons	0.26418	Lbs. per Sq. In.	mm of Mercury	51.715	Ins. of Mercury	mm of Mercury	25.40005
Liters	Cu. Inches	61.025	Lbs. per Sq. In.	Bar	0.06895	Ins. of Mercury	Bar	0.033864
Liters	Cu. Feet	0.0353	Lbs. per Sq. In.	kg per Sq. cm	0.070307	Ins. of Mercury	kg per Sq. cm	0.03453
Liters	Cu. Meters	0.001	Lbs. per Sq. In.	kg per Sq. M	703.070	Ins. of Mercury	kg per Sq. M	345.316
Liters	Lbs. of Water	2.202	Lbs. per Sq. Ft.	Lbs. per Sq. In.	0.0069445	mm of Mercury	Lbs. per Sq. In.	0.019337
Cu. Inches	Gallons	0.00433	Lbs. per Sq. Ft.	Atmospheres	0.000473	mm of Mercury	Lbs. per Sq. Ft.	2.7845
Cu. Inches	Liters	0.01639	Lbs. per Sq. Ft.	Ins. of Water	0.1926	mm of Mercury	Atmospheres	0.001316
Cu. Inches	Cu. Feet	0.00058	Lbs. per Sq. Ft.	Ft. of Water	0.01605	mm of Mercury	Ins. of Water	0.53616
Cu. Inches	Cu. Meters	0.000016	Lbs. per Sq. Ft.	Ins. of Mercury	0.014139	mm of Mercury	Ft. of Water	0.04468
Cu. Inches	Lbs. of Water	0.0362	Lbs. per Sq. Ft.	mm of Mercury	0.35913	mm of Mercury	Ins. of Mercury	0.03937
Cu. Feet	Gallons	7.48052	Lbs. per Sq. Ft.	Bar	0.000479	mm of Mercury	Bar	0.00133
Cu. Feet	Liters	28.316	Lbs. per Sq. Ft.	kg per Sq. cm	0.000488	mm of Mercury	kg per Sq. cm	0.00136
Cu. Feet	Cu. Inches Cu. Meters	1728 0.0283	Lbs. per Sq. Ft.	kg per Sq. M	4.88241	mm of Mercury	kg per Sq. M	13.59509
Cu. Feet CuFeet	Lbs. of Water	62.371	Atmospheres	Lbs. per Sq. In.	14.696	kg per Sq. cm	Lbs. per Sq. In.	14.2233
Cu. Meters	Gallons	264.17	Atmospheres	Lbs. per Sq. Ft.	2116.22	kg per Sq. cm	Lbs. per Sq. Ft.	2048.155
Cu. Meters	Liters	999.972	Atmospheres	Ins. of Water	407.484	kg per Sq. cm	Atmospheres	0.96784
Cu. Meters	Cu. Inches	61023.74	Atmospheres	Ft. of Water	33.957	kg per Sq. cm	Ins. of Water	394.38
Cu. Meters	Cu. Feet	35.3145	Atmospheres	Ins. of Mercury	29.921	kg per Sq. cm	Ft. of Water	32.865
Cu. Meters.	Lbs. of Water	2202.61	Atmospheres	mm of Mercury	760	kg per Sq. cm	Ins. of Mercury	28.959
Lbs. of Water	Gallons	0.11992		Bar	1.01325		· · · · · · · · · · · · · · · · · · ·	735.559
Lbs. of Water	Liters	0.45419	Atmospheres			kg per Sq. cm	mm of Mercury	
Lbs. of Water	Cu. Inches	27.643	Atmospheres	kg per Sq. cm	1.0332	kg per Sq. cm	Bar ka par Sa M	0.98067
Lbs. of Water	Cu. Feet	0.01603	Atmospheres	kg per Sq. M	10332.27	kg per Sq. cm	kg per Sq. M	10000
Lbs. of Water	Cu. Meters	0.000454	Ins. of Water	Lbs. per Sq. In.	0.03609			
			Ins. of Water	Lbs. per Sq. Ft.	5.1972			
	LINEAL MEASURES		Ins. of Water	Atmospheres	0.002454	Note: All weights	and measures of wa	ater are based
Inches	mm	25.4	Ins.of Water	Ft. of Water	0.08333	on temperature o		
Inches	CM	2.54	Ins. of Water	Ins. of Mercury	0.07343	p		
Inches Feet	Meters cm	0.0254 30.48	Ins. of Water	mm of Mercury	1.8651	Note: Temperatur	e of Water and Mere	cury is 68°F
Feet	Meters	0.3048	Ins. of Water	Bar	0.00249	and 32°F respect	ively.	
mm	Inches	0.03937	Ins. of Water	kg per Sq. cm	0.00253			
mm	Feet	0.00328	Ins. of Water	kg per Sq. M	25.375	Т	EMPERATURE	
cm	Inches	0.3937	Ft. of Water	Lbs. per Sq. In.	0.432781			°F - 32
cm	Feet	0.03281	Ft. of Water	Lbs. per Sq. Ft.	63.3205	To convert Fa	hrenheit to Celsi	JS: <u>1 - 52</u> 1.8
Meters	Feet	3.28	Ft. of Water	Atmospheres	0.029449	To convert Colo	ua ta Eabranhait. (1	0, 4, 8(0) , 20
			Ft. of Water	Ins. of Water	12	to convert Ceisil	us to Fahrenheit: (1	.8 X ⁻ C) + 32
	AREA		Ft. of Water	Ins. of Mercury	0.88115		VELOCITY	
Sq. Inches	Sq. Feet	0.006944	Ft. of Water	mm of Mercury	22.3813		12200111	
Sq. Inches	Sq. cm	6.4516	Ft. of Water	Bar	0.029839	1 Ft per S	ec. = 0.3048 M F	Per Sec.
Sq. Feet	Sq. Inches	144	Ft. of Water	kg per Sq. cm	0.03043	1	0.0000 5	0
Sq. Feet	Sq. cm	929.03	Ft. of Water	kg per Sq. M	304.275	T M per Se	ec. = 3.2808 Ft. p	ber Sec.
Sq. Feet	Sq. Meters	0.0929						
Sq. cm	Sq. Inches	0.155						
Sq. cm	Sq. Feet	0.00108						
Sq. cm	Sq. Meters	0.0001						
Sq. Meter Sq. Meter	Sq. Inches Sq. Feet	1550 10.76						
Sq. Ineter	ડપ. ત્લા	10.70						

PIPE DATA TABLES

Pipe Size (in.)	Outside Diameter (in.)	Weight Class	Carbon Steel Sched.	Stainless Steel Sched.	Wall Thickness (in.)	Inside Diameter (in.)	Circum. (Ext.) (in.)	Circum (Int.) (in.)	Flow Area (sq. in.)	Weight of Pipe (lbs/Ft.)	Weight of Water (lbs/Ft.)	Gallons of Water per Ft.	Section Modulus	Pipe Size (in.)
()	()	_		10S	.049	.307	()	.96	.074	.19	.032	.004	.00437	()
1/8	.405	STD	40	40S	.068	.269	1.27	.85	.057	.24	.025	.003	.00523	1/8
		XS	80	80S	.095	.215		.68	.036	.31	.016	.002	.00602	
		_	_	10S	.065	.410		1.29	.132	.33	.057	.007	.01032	
1/4	.540	STD	40	40S	.088	.364	1.70	1.14	.104	.42	.045	.005	.01227	1/4
		XS	80	80S	.119	.302		.95	.072	.54	.031	.004	.01395	
		—	—	10S	.065	.545		1.71	.233	.42	.101	.012	.01736	
3/8	.675	STD	40	40S	.091	.493	2.12	1.55	.191	.57	.083	.010	.0216	3/8
		XS	80	80S	.126	.423		1.33	.141	.74	.061	.007	.0255	
		—	—	5S	.065	.710		2.23	.396	.54	.172	.021	.0285	
		_	_	10S	.083	.674		2.12	.357	.67	.155	.019	.0341	
1/2		STD	40	40S	.109	.622		1.95	.304	.85	.132	.016	.0407	1/2
'72	.840	XS	80	80S	.147	.546	2.64	1.72	.234	1.09	.102	.012	.0478	'72
			160	—	.187	.466		1.46	.171	1.31	.074	.009	.0527	
		XXS	_	— FC	.294	.252		.79	.050	1.71	.022	.003	.0577	
		—	_	5S	.065	.920		2.89	.665	.69	.288	.035	.0467	
				10S	.083	.884		2.78	.614	.86	.266	.032	.0566	
3/4	1 050	STD XS	40 80	40S	.113 .154	.824 .742	3.30	2.59 2.33	.533	1.13 1.47	.231 .188	.028	.0706	3/4
7 4	1.050	72	80 160	80S	.154 .219	.742 .612		1.92	.433 .296	1.47	.188	.022 .015	.0853 .1004	7 4
		XXS	100		.219	.012 .434		1.92	.290	2.44	.128	.015	.1004	
		~^3		 5S	.065	1.185		3.72	1.103	.87	.478	.008	.0760	
				10S	.109	1.097		3.45	.945	1.40	.409	.037	.1151	
		STD	40	40S	.133	1.049		3.30	.864	1.68	.375	.047	.1328	
1	1.315	XS	80	80S	.179	.957	4.13	3.01	.719	2.17	.312	.037	.1606	1
		_	160		.250	.815		2.56	.522	2.84	.230	.027	.1903	
		XXS	_	_	.358	.599		1.88	.282	3.66	.122	.015	.2136	
		_	_	5S	.065	1.530		4.81	1.839	1.11	.797	.096	.1250	
		—	—	10S	.109	1.442		4.53	1.633	1.81	.708	.085	.1934	
		STD	40	40S	.140	1.380		4.34	1.495	2.27	.649	.078	.2346	
11/4	1.660	XS	80	80S	.191	1.278	5.22	4.02	1.283	3.00	.555	.067	.2913	1 ¹ /4
		—	160	—	.250	1.160		3.64	1.057	3.76	.458	.055	.3421	
		XXS	_	—	.382	.896		2.81	.630	5.21	.273	.033	.4110	
		—	—	5S	.065	1.770		5.56	2.461	1.28	1.066	.128	.1662	
		_		10S	.109	1.682		5.28	2.222	2.09	.963	.115	.2598	
11/2	1.900	STD	40	40S	.145	1.610	5.97	5.06	2.036	2.72	.882	.106	.3262	11/2
1.12	1.700	XS	80 140	80S	.200	1.500		4.71	1.767	3.63	.765	.092	.4118	172
		 VVC	160	_	.281 .400	1.338		4.20	1.406	4.86 6.41	.608	.073	.5078 .5977	
		XXS	_		.400	1.100 2.245		3.46 7.05	.950 3.958	1.61	.420 1.72	.049 .206	.2652	
			_	10S	.005	2.245		6.78	3.654	2.64	1.72	.200	.2052	
		STD	40	40S	.109	2.137		6.49	3.355	3.65	1.45	.190	.5606	
2	2.375	XS	40 80	403 80S	.218	1.939	7.46	6.09	2.953	5.05	1.45	.174	.7309	2
			160		.344	1.687		5.30	2.241	7.46	.97	.116	.9790	
		XXS	_		.436	1.503		4.72	1.774	9.03	.77	.092	1.1040	
		_	_	5S	.083	2.709		8.51	5.764	2.48	2.50	.299	.4939	
		_	_	10S	.120	2.635		8.28	5.453	3.53	2.36	.283	.6868	
	0.077	STD	40	40S	.203	2.469		7.76	4.788	5.79	2.07	.249	1.064	
21/2	2.875	XS	80	80S	.276	2.323	9.03	7.30	4.238	7.66	1.87	.220	1.339	21/2
		—	160	—	.375	2.125		6.68	3.546	10.01	1.54	.184	1.638	
		XXS	—	—	.552	1.771		5.56	2.464	13.69	1.07	.128	1.997	

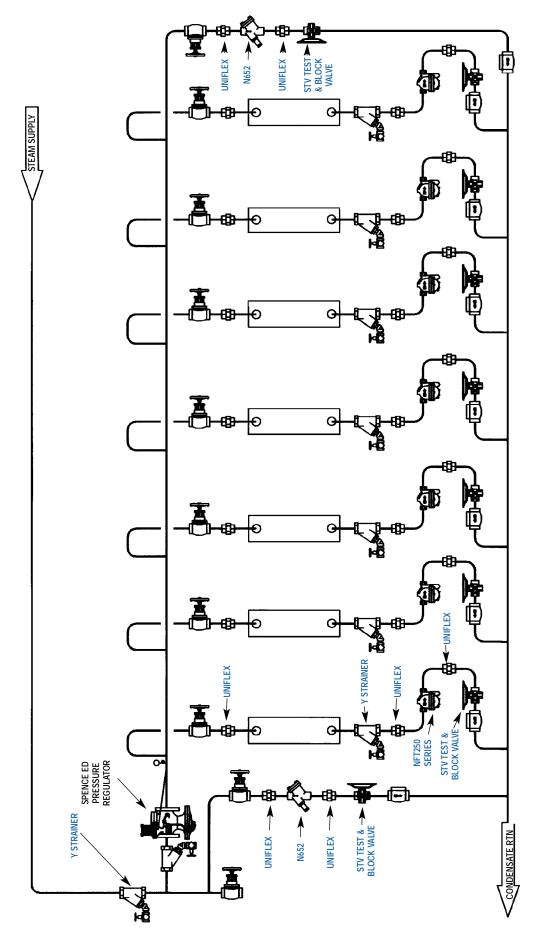
PIPE DATA TABLES CONT'D.

Pipe Size	Outside Diameter	Weight	Carbon Steel	Stainless Steel	Wall Thickness	Inside Diameter	Circum. (Ext.)	Circum (Int.)	Flow Area	Weight of Pipe	Weight of Water	Gallons of Water	Section	Pipe Size
(in.)	(in.)	Class	Sched.	Sched.	(in.)	(in.)	(in.)	(in.)	(sq. in.)	(lbs/Ft.)	(lbs/Ft.)	per Ft.	Modulus	(in.)
		_	_	5S	.083	3.334		10.47	8.730	3.03	3.78	.454	.744	
		_	_	10S	.120	3.260		10.24	8.347	4.33	3.62	.434	1.041	
2	2 500	STD	40	40S	.216	3.068	11 00	9.64	7.393	7.58	3.20	.384	1.724	0
3	3.500	XS	80	80S	.300	2.900	11.00	9.11	6.605	10.25	2.86	.343	2.225	3
		—	160	—	.438	2.624		8.24	5.408	14.32	2.35	.281	2.876	
		XXS	—	—	.600	2.300		7.23	4.155	18.58	1.80	.216	3.424	
		—	—	5S	.083	4.334		13.62	14.75	3.92	6.39	.766	1.249	
		—	—	10S	.120	4.260		13.38	14.25	5.61	6.18	.740	1.761	
		STD	40	40S	.237	4.026		12.65	12.73	10.79	5.50	.661	3.214	
4	4.500	XS	80	80S	.337	3.826	14.14	12.02	11.50	14.98	4.98	.597	4.271	4
		—	120	—	.438	3.624		11.39	10.31	19.00	4.47	.536	5.178	
		—	160	—	.531	3.438		10.80	9.28	22.51	4.02	.482	5.898	
		XXS	—	—	.674	3.152		9.90	7.80	27.54	3.38	.405	6.791	
		—	_	5S	.109	5.345		16.79	22.44	6.36	9.72	1.17	2.498	
			-	10S	.134	5.295		16.63	22.02	7.77	9.54	1.14	3.029	
_		STD	40	40S	.258	5.047		15.86	20.01	14.62	8.67	1.04	5.451	_
5	5.563	XS	80	80S	.375	4.813	17.48	15.12	18.19	20.78	7.88	.945	7.431	5
			120	—	.500	4.563		14.34	16.35	27.04	7.09	.849	9.250	
			160	—	.625	4.313		13.55	14.61	32.96	6.33	.759	10.796	
		XXS	—	-	.750	4.063		12.76	12.97	38.55	5.61	.674	12.090	
		—	—	5S	.109	6.407		20.13	32.24	7.60	13.97	1.68	3.576	
		-		10S	.134	6.357		19.97	31.74	9.29	13.75	1.65	4.346	
,	((05	STD	40	40S	.280	6.065	00.01	19.05	28.89	18.97	12.51	1.50	8.496	,
6	6.625	XS	80	80S	.432	5.761	20.81	18.10	26.07	28.57	11.29	1.35	12.22	6
		—	120	-	.562	5.501		17.28	23.77	36.39	10.30	1.24	14.98	
			160	-	.719	5.187		16.30	21.15	45.35	9.16	1.10	17.81	
		XXS	—	-	.864	4.897		15.38	18.84	53.16	8.16	.978	20.02	
			_	5S	.109	8.407		26.41	55.51	9.93	24.06	2.88	6.131	
		_		10S	.148	8.329		26.17	54.48	13.40	23.61	2.83	8.212	
			20	_	.250	8.125		25.53	51.85	22.36	22.47	2.69	13.39	
			30		.277	8.071		25.36	51.16	24.70	22.17	2.66	14.69	
		STD	40	40S	.322 .406	7.981 7.813		25.07 24.55	50.03 47.94	28.55 35.64	21.70 20.77	2.60 2.49	16.81 20.58	
8	8.625	XS	60 80		.406 .500	7.813	27 10	24.55	47.94 45.66	35.64 43.39	20.77 19.78	2.49	20.58 24.51	8
0	0.020	٨Э	100	003	.500 .594	7.625	27.10	23.95	45.00 43.46	43.39 50.95	19.78	2.37	24.51 28.14	0
		_	120	_	.719	7.187		23.50	40.59	60.71	17.59	2.20	32.58	
		_	140		.812	7.001		22.56	40.59 38.50	67.76	16.68	2.11	32.56 35.65	
		XXS	140	_	.012 .875	6.875		21.99	36.50	72.42	16.10	1.93	35.65	
			160	_	.906	6.813		21.00	36.46	72.42	15.80	1.93	37.50	
		_		 5S	.900	10.482		32.93	86.29	15.19	37.39	4.48	11.71	
		_		10S	.165	10.482		32.93	85.28	18.65	36.95	4.40	14.30	
		_	20		.250	10.420		32.74	82.52	28.04	35.76	4.43	21.15	
		_	30	_	.250	10.230		31.84	80.69	28.04 34.24	34.96	4.29	25.57	
		STD	40	40S	.365	10.020		31.48	78.86	40.48	34.20	4.19	29.90	
10	10.750	XS	60	80S	.500	9.750	33.77	30.63	74.66	40.40 54.74	32.35	3.88	39.43	10
10	10.750		80		.500	9.562	55.77	30.03	74.00	64.43	31.13	3.73	45.54	10
			100	_	.719	9.312		29.25	68.13	77.03	29.53	3.54	53.22	
		_	120	_	.844	9.062		28.47	64.53	89.29	27.96	3.35	60.32	
		XXS	140	_	1.000	8.750		27.49	60.13	104.13	26.06	3.12	68.43	
		_	160	—	1.125	8.500		26.70	56.75	115.64	24.59	2.95	74.29	

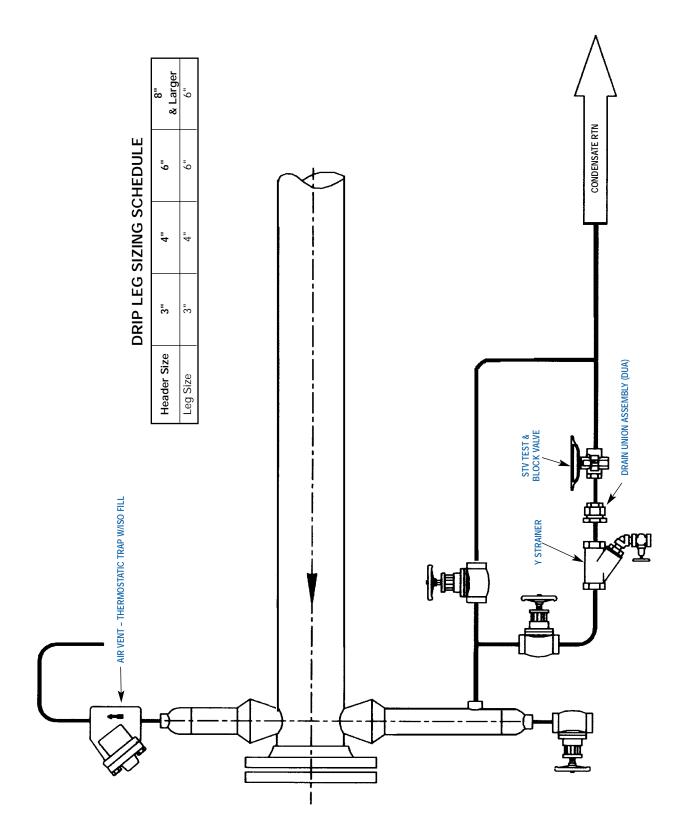
PIPE DATA TABLES CONT'D.

Pipe Size	Outside Diameter	Weight	Carbon Steel	Stainless Steel	Wall Thickness	Inside Diameter	Circum. (Ext.)	Circum (Int.)	Flow Area	Weight of Pipe	Weight of Water	Gallons of Water	Section	Pipe Size
(in.)	(in.)	Class	Sched.	Sched.	(in.)	(in.)	(in.)	(in.)	(sq. in.)	(lbs/Ft.)	(lbs/Ft.)	per Ft.	Modulus	(in.)
		—	—	5S	.156	12.438		39.08	121.50	20.98	52.65	6.31	19.2	
		_	_	10S	.180	12.390		38.92	120.57	24.17	52.25	6.26	22.0	
		—	20	—	.250	12.250		38.48	117.86	33.38	51.07	6.12	30.2	
			30		.330	12.090		37.98	114.80	43.77	49.74	5.96	39.0	
		STD	-	40S	.375	12.000		37.70	113.10	49.56	49.00	5.88	43.8	
10	10 750		40		.406	11.938	10.04	37.50	111.93	53.52	48.50	5.81	47.1	10
12	12.750	XS	— (0	80S	.500	11.750	40.06	36.91	108.43	65.42	46.92	5.63	56.7	12
		_	60	_	.562	11.626		36.52	106.16	73.15	46.00	5.51	62.8	
		—	80 100	_	.688 .844	11.374 11.062		35.73 34.75	101.64 96.14	88.63	44.04	5.28 4.99	74.6 88.1	
		XXS	120	_	.844 1.000	10.750		34.75	90.14 90.76	107.32 125.49	41.66 39.33	4.99	88.1 100.7	
		~~>	140	_	1.125	10.750		32.99	90.70 86.59	125.49	37.52	4.71	100.7	
		_	140	_	1.312	10.500		31.81	80.59	160.27	34.89	4.50	109.9	
		_	100	 5S	.156	13.688		43.00	147.15	23.07	63.77	7.64	23.2	
		_		10S	.188	13.624		43.00	147.15	23.07	63.17	7.57	23.2 27.8	
			10		.250	13.500		42.41	143.14	36.71	62.03	7.44	36.6	
		_	20	_	.312	13.376		42.02	140.52	45.61	60.89	7.30	45.0	
		STD	30	_	.375	13.250		41.63	137.88	54.57	59.75	7.16	53.2	
		_	40	_	.438	13.124		41.23	135.28	63.44	58.64	7.03	61.3	
14	14.000	XS		_	.500	13.000	43.98	40.84	132.73	72.09	57.46	6.90	69.1	14
	1 11000	_	60	_	.594	12.812	10170	40.25	128.96	85.05	55.86	6.70	80.3	
		_	80	_	.750	12.500		39.27	122.72	106.13	53.18	6.37	98.2	
		_	100	_	.938	12.124		38.09	115.49	130.85	50.04	6.00	117.8	
		_	120	_	1.094	11.812		37.11	109.62	150.79	47.45	5.69	132.8	
		_	140	_	1.250	11.500		36.13	103.87	170.28	45.01	5.40	146.8	
		—	160	_	1.406	11.188		35.15	98.31	189.11	42.60	5.11	159.6	
		_		5S	.165	15.670		49.23	192.85	27.90	83.57	10.02	32.2	
		_	_	10S	.188	15.624		49.08	191.72	31.75	83.08	9.96	36.5	
		_	10	_	.250	15.500		48.69	188.69	42.05	81.74	9.80	48.0	
		—	20	—	.312	15.376		48.31	185.69	52.27	80.50	9.65	59.2	
		STD	30	—	.375	15.250		47.91	182.65	82.58	79.12	9.49	70.3	
1/	1/ 00	XS	40	_	.500	15.000	50.07	47.12	176.72	82.77	76.58	9.18	91.5	17
16	16.00	_	60	_	.656	14.688	50.27	46.14	169.44	107.50	73.42	8.80	116.6	16
		—	80	_	.844	14.312		44.96	160.92	136.61	69.73	8.36	144.5	
		—	100	—	1.031	13.938		43.79	152.58	164.82	66.12	7.93	170.5	
		—	120	_	1.219	13.562		42.61	144.50	192.43	62.62	7.50	194.5	
		—	140	_	1.438	13.124		41.23	135.28	233.64	58.64	7.03	220.0	
		—	160	—	1.594	12.812		40.26	128.96	245.25	55.83	6.70	236.7	
		—	—	5S	.165	17.67		55.51	245.22	31.43	106.26	12.74	40.8	
		—		10S	.188	17.62		55.37	243.95	35.76	105.71	12.67	46.4	
		_	10	—	.250	17.50		54.98	240.53	47.39	104.21	12.49	61.1 75 5	
			20	_	.312	17.38		54.59	237.13	58.94	102.77	12.32	75.5	
		STD	20	_	.375 420	17.25		54.19	233.71	70.59 92.15	101.18	12.14	89.6	
		 VC	30	_	.438	17.12		53.80 53.41	230.30	82.15 02.45	99.84	11.96	103.4	
18	18.00	XS	40	_	.500 .562	17.00 16.88	56.55	53.41	226.98 223.68	93.45 104.87	98.27 96.93	11.79 11.62	117.0 130.1	18
		_	40 60	_	.562 .750	16.88 16.50		53.02	223.68	104.87	96.93 92.57	11.02	130.1 168.3	
		_	80	_	.750	16.50		51.84	213.83	138.17	92.57 88.50	10.61	203.8	
			100		.930 1.156	15.69		49.29	193.30	207.96	83.76	10.01	203.0 242.3	
			120	_	1.150	15.09		49.29	193.30	207.96	79.07	9.49	242.3 277.6	
		_	140		1.562	14.88		47.91	173.80	274.14	75.32	9.49	305.5	
			140		1.562	14.00 14.44		40.73	163.72	308.50	70.88	9.03 8.50	305.5 335.6	
			100		1.701	14.44		40.00	103.72	300.00	10.00	0.00	000.0	

PIPE DATA TABLES CONT'D.

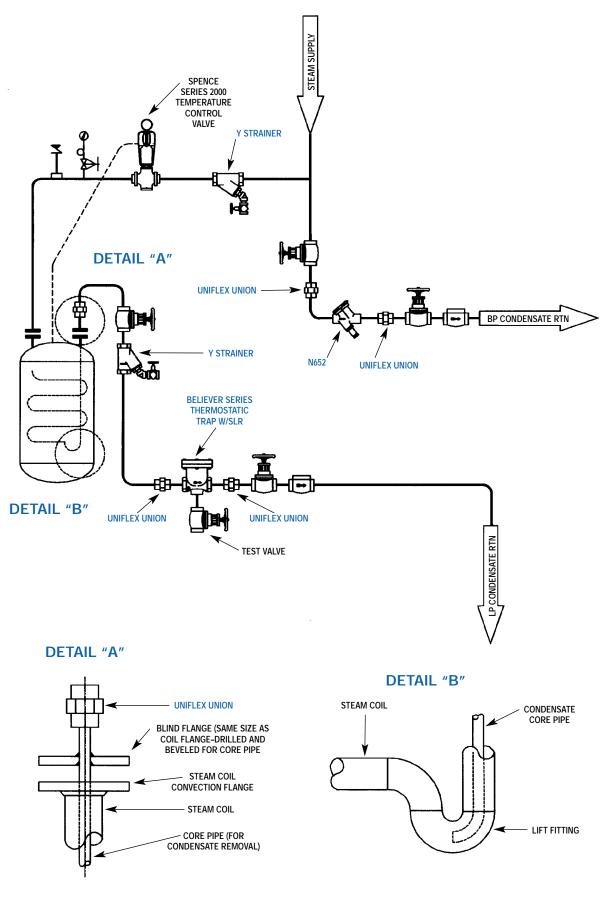

Pipe	Outside		Carbon	Stainless		Inside	Circum.	Circum	Flow	Weight	Weight	Gallons		Pipe
Size (in.)	Diameter (in.)	Weight Class	Steel Sched.	Steel Sched.	Thickness (in.)	Diameter (in.)	(Ext.) (in.)	(Int.) (in.)	Area (sq. in.)	of Pipe (lbs/Ft.)	of Water (lbs/Ft.)	of Water per Ft.	Section Modulus	Size (in.)
(111.)	(111.)			5S	.188	19.62	(11.)	61.65	302.46	39.78	131.06	15.71	57.4	(111.)
		_	_	10S	.218	19.56		61.46	300.61	46.06	130.27	15.62	66.3	
		_	10	_	.250	19.50		61.26	298.65	52.73	129.42	15.51	75.6	
		_	20	_	.375	19.25		60.48	290.04	78.60	125.67	15.12	111.3	
		STD	30	_	.500	19.00		59.69	283.53	104.13	122.87	14.73	145.7	
		XS	40	_	.594	18.81		59.10	278.00	123.11	120.46	14.44	170.4	
20	20.00	_	60	_	.812	18.38	62.83	57.73	265.21	166.40	114.92	13.78	225.7	20
		_	80	_	1.031	17.94		56.35	252.72	208.87	109.51	13.13	277.1	
		—	100	_	1.281	17.44		54.78	238.83	256.10	103.39	12.41	331.5	
		—	120	_	1.500	17.00		53.41	226.98	296.37	98.35	11.79	375.5	
		_	140	_	1.750	16.50		51.84	213.82	341.09	92.66	11.11	421.7	
		_	160	_	1.969	16.06		50.46	202.67	379.17	87.74	10.53	458.5	
		—		5S	.188	21.62		67.93	367.25	43.80	159.14	19.08	69.7	
		—	—	10S	.218	21.56		67.75	365.21	50.71	158.26	18.97	80.4	
		—	10	—	.250	21.50		67.54	363.05	58.07	157.32	18.86	91.8	
		STD	20	—	.375	21.25		66.76	354.66	86.61	153.68	18.42	135.4	
	22.00	XS	30	—	.500	21.00	(0.10	65.97	346.36	114.81	150.09	17.99	117.5	22
22	22.00	—	60	—	.875	20.25	69.12	63.62	322.06	197.41	139.56	16.73	295.0	22
		—	80	—	1.125	19.75		62.05	306.35	250.81	132.76	15.91	366.4	
		—	100	—	1.375	19.25		60.48	291.04	302.88	126.12	15.12	432.6	
		—	120	—	1.625	18.75		58.90	276.12	353.61	119.65	14.34	493.8	
		—	140	—	1.875	18.25		57.33	261.59	403.00	113.36	13.59	550.3	
		—	160	_	2.125	17.75		55.76	247.45	451.06	107.23	12.85	602.4	
		—		5S	.218	23.56		74.03	436.10	55	188.98	22.65	96.0	
		_	10	10S	.250	23.50		73.83	433.74	63	187.95	22.53	109.6	
		STD	20	-	.375	23.25		73.04	424.56	95	183.95	22.05	161.9	
		XS		-	.500	23.00		72.26	415.48	125	179.87	21.58	212.5	
		—	30	_	.562	22.88		71.86	411.00	141	178.09	21.35	237.0	
24	24.00	—	40	—	.688	22.62	75.40	71.08	402.07	171	174.23	20.88	285.1	24
		—	60	—	.969	22.06		69.31	382.35	238	165.52	19.86	387.7	
		—	80	_	1.219	21.56		67.74	365.22	297	158.26	18.97	472.8	
		—	100	_	1.531	20.94		65.78	344.32	367	149.06	17.89	570.8	
		—	120	_	1.812	20.38		64.01	326.08	430	141.17	16.94	652.1	
		—	140	_	2.062	19.88		62.44	310.28	483	134.45	16.12	718.9	
		—	160	— EC	2.344	19.31 20.50		60.67	292.98	542	126.84	15.22 25.51	787.9	
		—	— 10	5S	.250	29.50		92.68 92.29	683.49	79 99	296.18	35.51	172.3	
30	30.00		10	10S	.312 .375	29.38 29.25	94.25	92.29 91.89	677.71	99 119	293.70 291.18	35.21 34.91	213.8 255.3	30
30	30.00	STD XS	20	_	.375	29.25 29.00	94.20	91.89	671.96 660.52	158	291.18	34.91	255.3 336.1	30
			20 30	_	.625	29.00 28.75		91.11	649.18	158 196	286.22	34.31	330.1 414.9	
		_	30		.020	20.75		90.32	047.10	190	201.31	33.7Z	414.9	

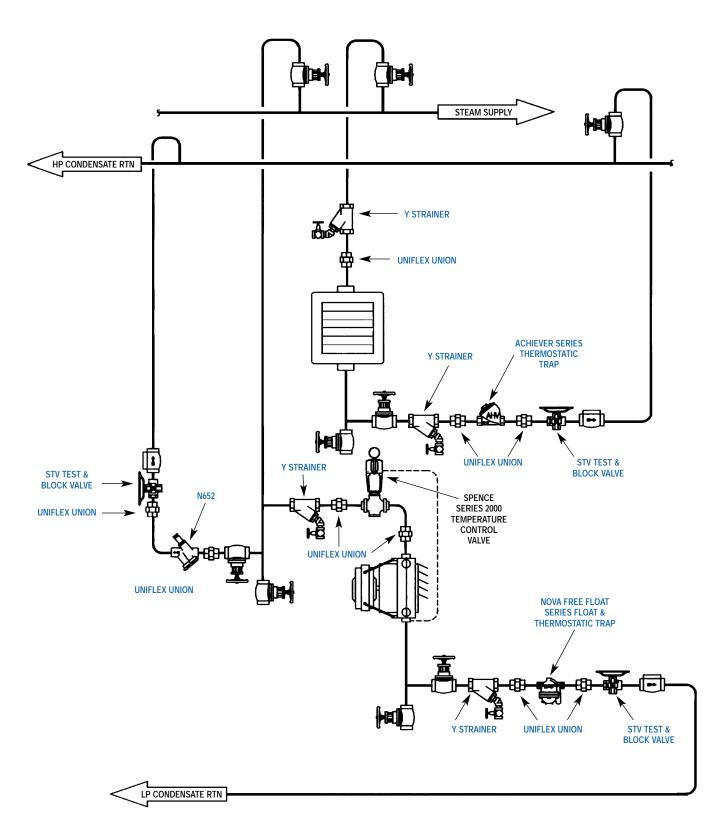
Application Drawings

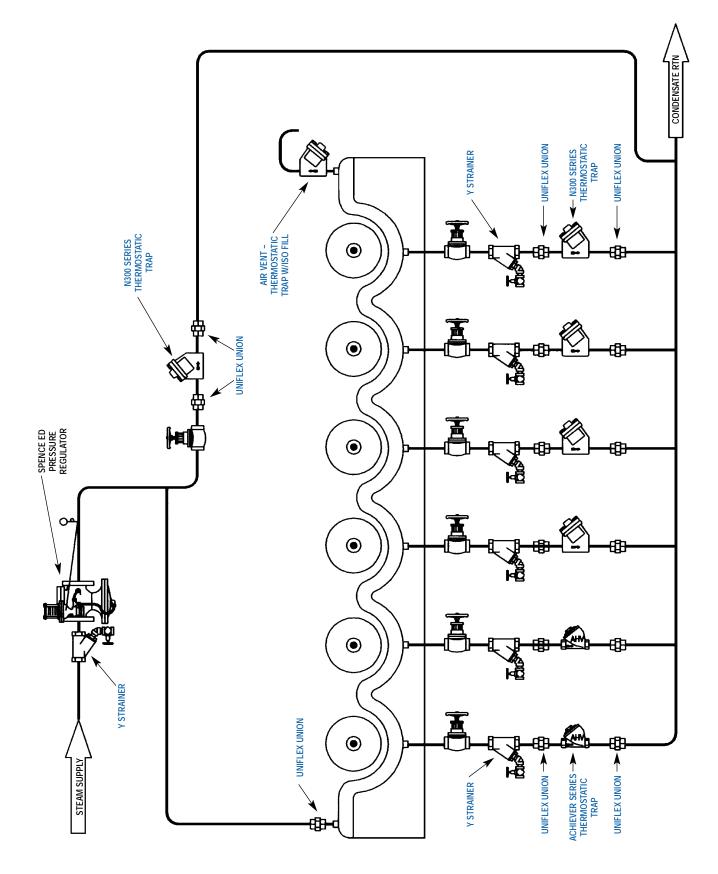

This section contains drawings of typical industrial applications. Nicholson products have been highlighted to help illustrate their use and emphasize appropriate configurations. Although specific model traps have been called out, please understand that these are not necessarily the only choice. A N450, N650, or possibly a N125 could replace a TA or a FTN, Dura-Flo, or industrial thermostatic trap could replace a NFT. These decisions must be based on customer preference, system pressure and design and competitive influences. The following points should also guide trap selection:

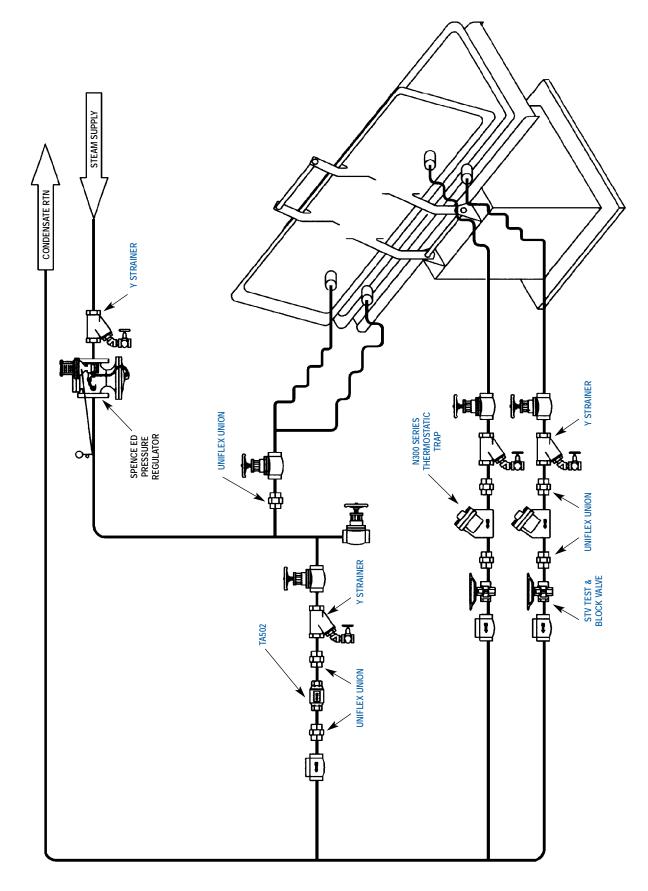
- Appropriate length of cooling leg when specifying thermostatic traps.
- Specify SLR option when condensate must be lifted before trap.
- Trap capacity reduction due to return line back pressure.
- Matching not only capacity requirements but also pressure when selecting orifices for mechanical traps
- Being aware of air venting needs.
- Consider upstream controls such as temperature regulators that may vary pressure.
- Thermostatic traps used as air vents should utilize ISO fill and %" orifices.

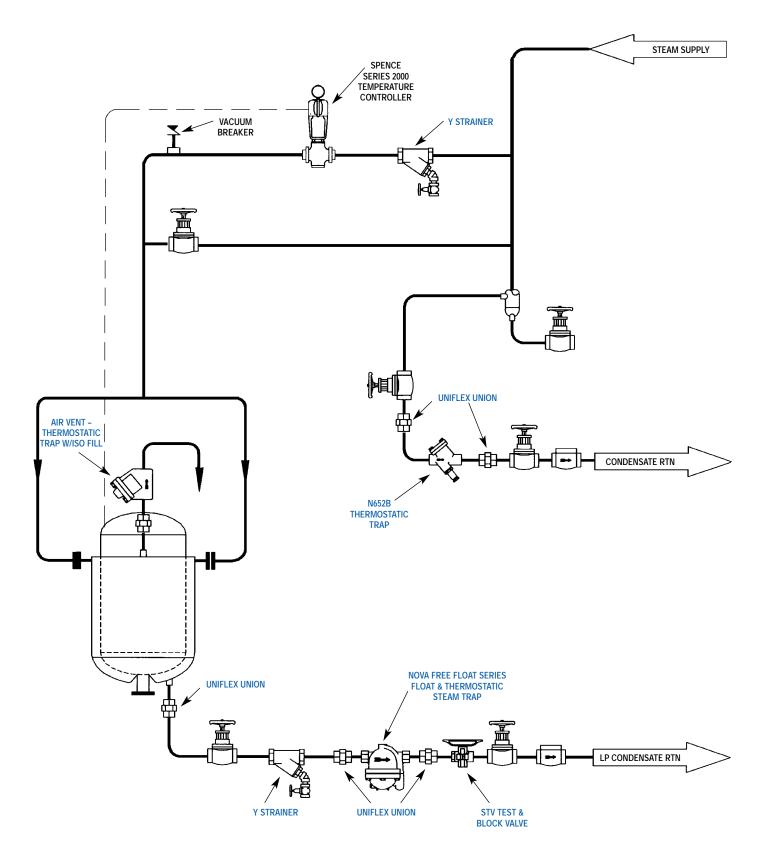

OVEN HEATING COILS

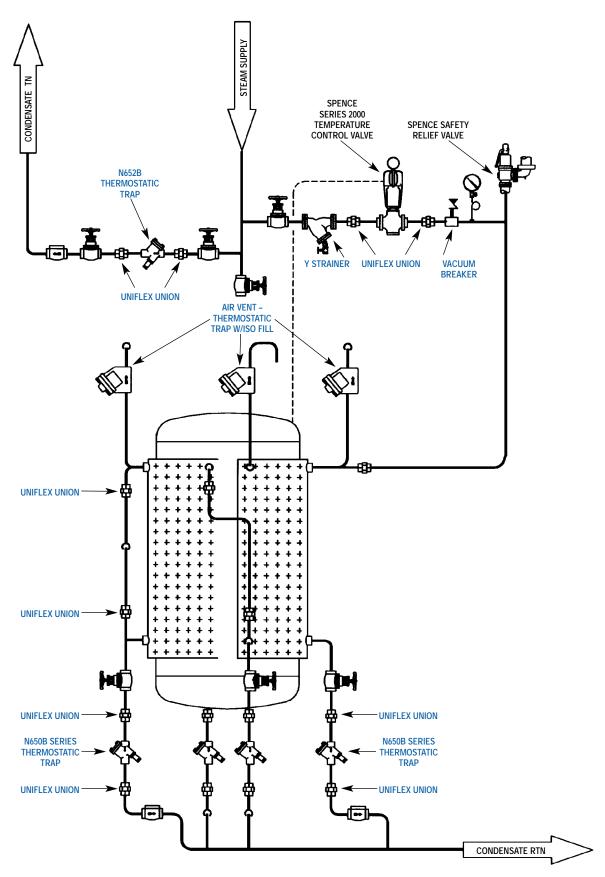

DRIP LEG/END OF MAIN LEG

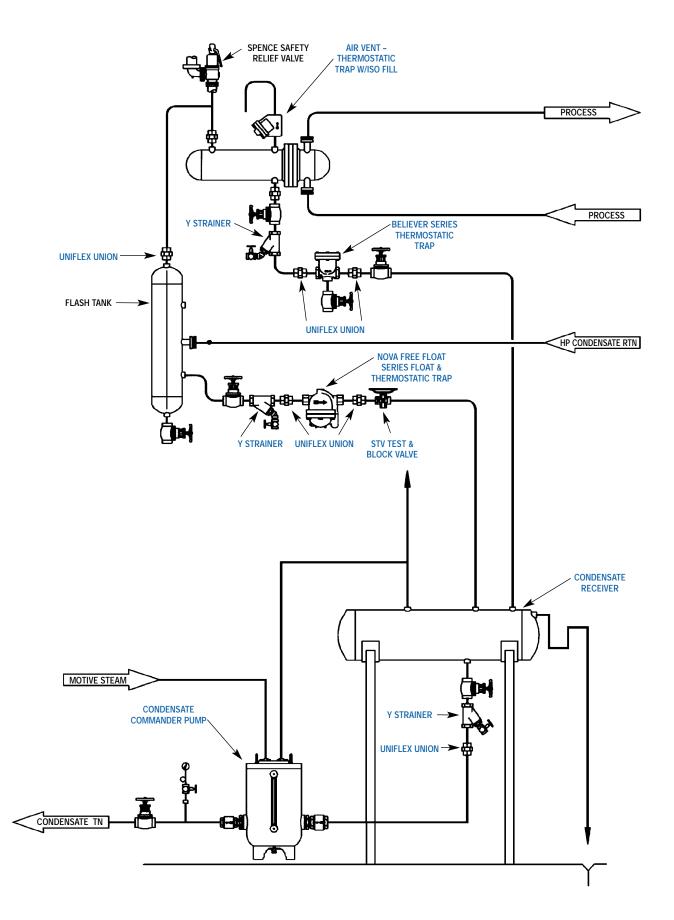

SHELL & TUBE HEAT EXCHANGER

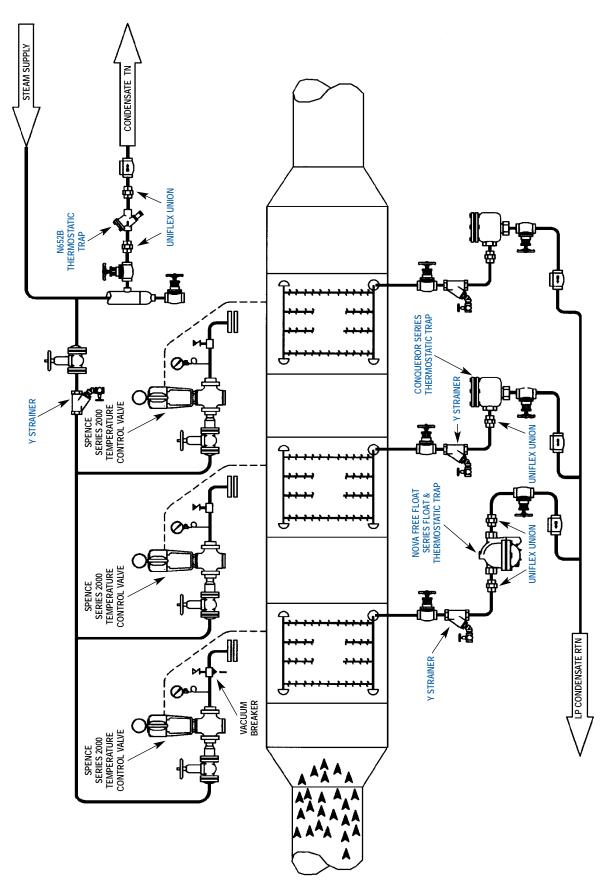

VESSEL WITH STEAM COIL OUTLET AT TOP

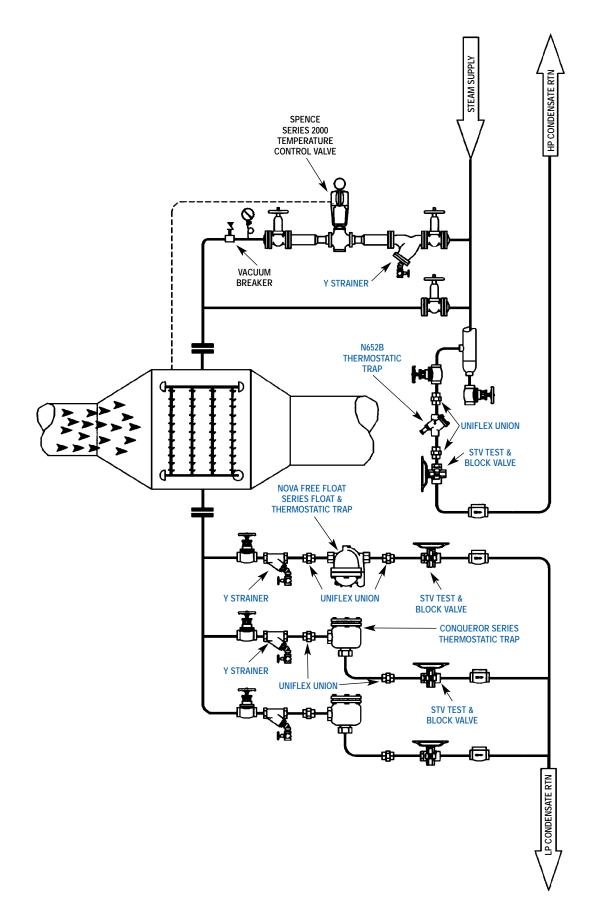

UNIT HEATER

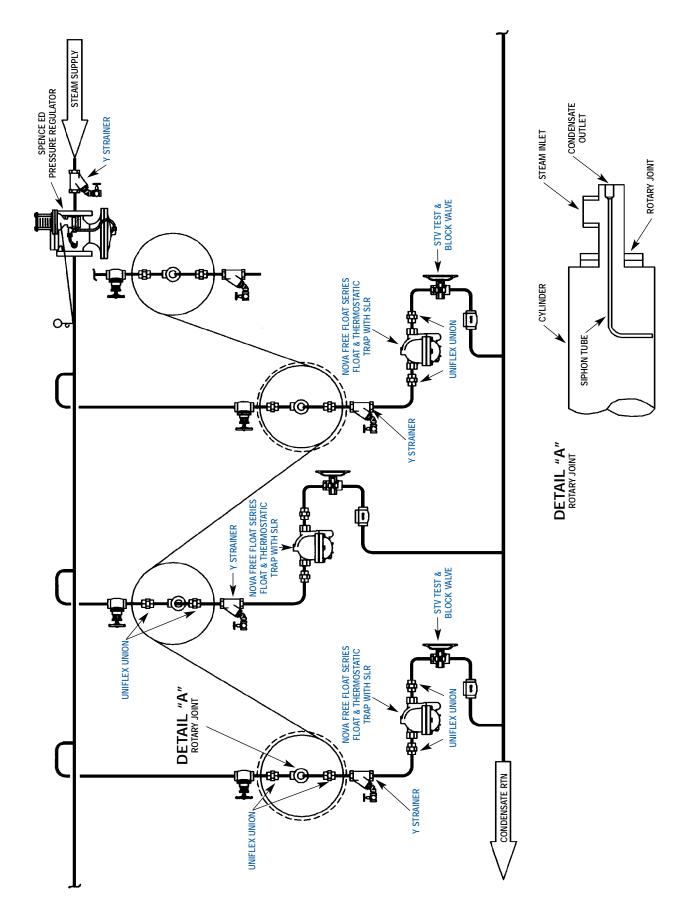

FLAT WORK IRONER

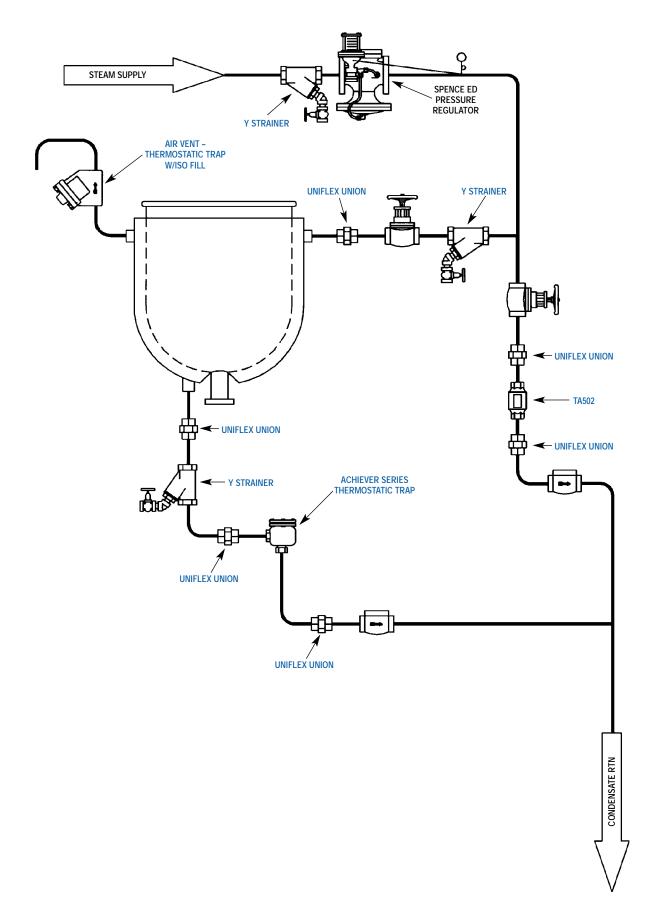

STEAM PRESS

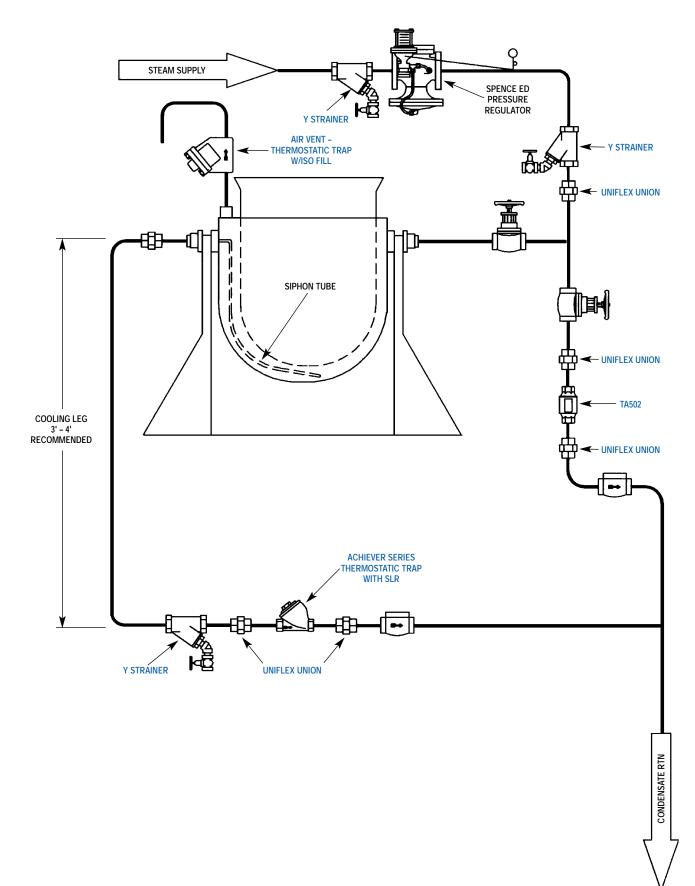

JACKETED PRESSURE VESSEL

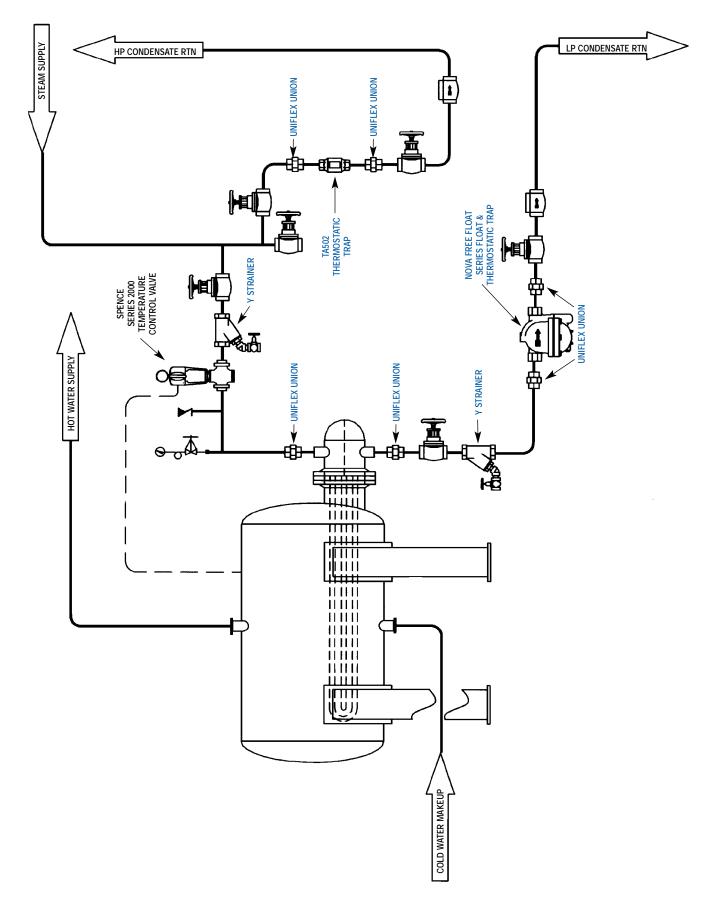

PRESSURE VESSEL WITH DIMPLE JACKET


FLASH TANK WITH CONDENSATE BOOSTER PUMP


MULTI-COIL AIR HANDLER


HIGH PRESSURE AIR COIL


DRY CAN/CALENDER ROLL


JACKETED KETTLE

TILTING JACKETED KETTLE

DOMESTIC HOT WATER

GLOSSARY OF TERMS

Celtron Cartridge - The thermodynamic capsule comprising the operational components of most Nicholson thermodynamic traps.

Differential Pressure - The pressure upstream of the steam trap less the pressure after the trap is referred to as differential pressure. When sizing Nicholson traps the capacity charts are based on the differential pressures across the trap.

HC - This is a suffix on some Nicholson thermostatic traps indicating a high capacity option. Sometimes called OS.

ISO - See Subcooling fill.

L - A suffix on some Nicholson thermostatic and thermodynamic traps indicating a low capacity option.

OS - See HC

R - A suffix on some Nicholson thermostatic traps indicating a reduced capacity option.

Saturated Temperature - The temperature at which water boils at a given pressure. Water changes phase into steam along a pressure temperature curve. These pressures and temperatures may be found in the steam tables.

Skirted Seat (SK) - This is an option employing a seat that diffuses the condensate discharge reducing the possibility of internal body erosion. This option, available on the N450 and N650, should be specified when the steam service pressure is in the top third of the trap's pressure rating.

Spiral Wound Gasket - This class of gasket is utilized throughout our higher pressure traps and the Uniflex union. It is characterized by utilizing a metal winding, often stainless steel, sandwiching a filler, often a graphite material. While relatively expensive, the sealing performance of this class of gasket is generally considered superior to most others. Steam Lock Release (SLR) - This is an orifice from .0225 to .03125 inches dependent on model, added to a steam trap to prevent flash steam locking. This option is recommended when condensate piping must rise over an obstacle before draining to a trap. A typical application would be a coil in a kettle whose outlet must rise over the side before dropping to the steam trap. An alternate usage typically involves thermostatic traps in clean steam or sterilizer applications. The SLR is specified to increase sensitivity and minimize condensate backup.

Sterilizer Trim - This option typically employs an alternate seat. Internal geometries are altered in such a fashion that trap sensitivity is increased. The option takes its name from the service often requiring the most sensitive of thermostatic traps. Sterilizer trim is occasionally combined with high capacity and SLR options thus yielding a super sensitive high capacity steam trap.

Subcool - often associated with the sensitivity of a thermostatic trap this term indicates a temperature below the saturated steam curve. Thermostatic traps actuate at temperatures below saturated. Standard Nicholson Traps typically actuate in the 8° to 10°F subcool range i.e. they expel condensate 8° to 10°F below saturated steam temperature.

Subcooling Fill - An optional bellows utilizing an alternate fill enabling the trap to release condensate at 30° to 40°F below saturated temperature. This option should be specified when reducing the volume of flash steam created by condensate is desired or when pressures exceeding 500 psi are expected. Also referred to as ISO.

Welded Bellows - Temperature sensitive, fluid filled bellows opens to let condensate and air out and closes to trap steam in. Welded bellows fail open or fail closed in the event of bellows failure. Welded bellows are available in stainless steel and inconel, depending on model.

STEAM TABLE QUICK REFERENCE CHART

NIC	Ю	LSC)N S	STE	AM	TRA	٩P,	
PRESS PSIG	TEMP ° F	TEMP °C	PRESS PSIG	TEMP ° F	TEMP °C	PRESS PSIG	TEMP ° F	°C
0	212	100	85	328	164	290	419	215
1	215	102	90	331	166	300	422	217
3	219	104	95	335	168	320	428	220
5	227	108	100	338	170	340	433	223
8	235	113	110	344	173	360	438	226
10	239	115	120	350	177	380	443	229
15	250	121	130	356	180	400	448	231
20	259	126	140	361	183	420	453	234
25	267	130	150	366	186	440	457	236
30	274	134	160	371	188	460	462	239
35	281	138	170	375	191	480	466	241
40	287	142	180	380	193	500	470	243
45	292	145	190	384	195	520	474	246
50	298	148	200	388	198	540	478	248
55	303	150	215	394	201	560	482	250
60	307	153	230	399	204	580	485	252
65	312	155	245	404	207	600	489	254
70	316	158	250	406	208	620	492	256
75	320	160	260	409	210	640	496	258
80	324	162	275	414	212	660	499	259

19501 144th Ave NE #A400 Woodinville, WA 98072 PH: 425.483.5613 sales@controlfactors.com